![2020年河南省中考数学试卷解析版01](http://img-preview.51jiaoxi.com/2/3/5980078/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年河南省中考数学试卷解析版02](http://img-preview.51jiaoxi.com/2/3/5980078/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年河南省中考数学试卷解析版03](http://img-preview.51jiaoxi.com/2/3/5980078/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020年河南省中考数学试卷解析版
展开
2020年河南省中考数学试卷
题号
一
二
三
总分
得分
一、选择题(本大题共10小题,共30.0分)
1. 2的相反数是( )
A. -2 B. - C. D. 2
2. 如图摆放的几何体中,主视图与左视图有可能不同的是( )
A. B. C. D.
3. 要调查下列问题,适合采用全面调查(普查)的是( )
A. 中央电视台《开学第一课》的收视率
B. 某城市居民6月份人均网上购物的次数
C. 即将发射的气象卫星的零部件质量
D. 某品牌新能源汽车的最大续航里程
4. 如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为( )
A. 100°
B. 110°
C. 120°
D. 130°
5. 电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于( )
A. 230B B. 830B C. 8×1010B D. 2×1030B
6. 若点A(-1,y1),B(2,y2),C(3,y3)在反比例函数y=-的图象上,则y1,y2,y3的大小关系是( )
A. y1>y2>y3 B. y2>y3>y1 C. y1>y3>y2 D. y3>y2>y1
7. 定义运算:m☆n=mn2-mn-1.例如:4☆2=4×22-4×2-1=7.则方程1☆x=0的根的情况为( )
A. 有两个不相等的实数根 B. 有两个相等的实数根
C. 无实数根 D. 只有一个实数根
8. 国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为( )
A. 500(1+2x)=7500
B. 5000×2(1+x)=7500
C. 5000(1+x)2=7500
D. 5000+5000(1+x)+5000(1+x)2=7500
9. 如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(-2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为( )
A. (,2)
B. (2,2)
C. (,2)
D. (4,2)
10. 如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为( )
A. 6
B. 9
C. 6
D. 3
二、填空题(本大题共5小题,共15.0分)
11. 写出一个大于1且小于2的无理数______.
12. 已知关于x的不等式组其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为______.
13. 如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是______.
14. 如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为______.
15. 如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为______.
三、解答题(本大题共8小题,共75.0分)
16. 先化简,再求值:(1-)÷,其中a=+1.
17. 为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:
[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:
甲:501 497 498 502 513 489 506 490 505 486
502 503 498 497 491 500 505 502 504 505
乙:505 499 502 491 487 506 493 505 499 498
502 503 501 490 501 502 511 499 499 501
[整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.
质量
频数
机器
485≤x<490
490≤x<495
495≤x<500
500≤x<505
505≤x<510
510≤x<515
甲
2
2
4
7
4
1
乙
1
3
5
7
3
1
[分析数据]根据以上数据,得到以下统计量.
统计量
机器
平均数
中位数
方差
不合格率
甲
499.7
501.5
42.01
b
乙
499.7
a
31.81
10%
根据以上信息,回答下列问题:
(1)表格中的a=______,b=______;
(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.
18. 位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.
某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.
(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41);
(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.
19. 暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.
方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;
方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.
设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.
(1)求k1和b的值,并说明它们的实际意义;
(2)求打折前的每次健身费用和k2的值;
(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.
20. 我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具--三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.
使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.
为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.
已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,______.
求证:______.
21. 如图,抛物线y=-x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.
(1)求抛物线的解析式及点G的坐标;
(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标yQ的取值范围.
22. 小亮在学习中遇到这样一个问题:
如图,点D是上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.
小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:
(1)根据点D在上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几组对应值.
BD/cm
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
CD/cm
8.0
7.7
7.2
6.6
5.9
a
3.9
2.4
0
FD/cm
8.0
7.4
6.9
6.5
6.1
6.0
6.2
6.7
8.0
操作中发现:
①“当点D为的中点时,BD=5.0cm”.则上表中a的值是______;
②“线段CF的长度无需测量即可得到”.请简要说明理由.
(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为yCD和yFD,并在平面直角坐标系xOy中画出了函数yFD的图象,如图所示.请在同一坐标系中画出函数yCD的图象;
(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).
23. 将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.
(1)如图1,当α=60°时,△DEB′的形状为______,连接BD,可求出的值为______;
(2)当0°<α<360°且α≠90°时,
①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;
②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出的值.
答案和解析
1.【答案】A
【解析】解:2的相反数是-2.
故选:A.
利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.
此题主要考查了相反数的概念,正确把握定义是解题关键.
2.【答案】D
【解析】解:A、主视图和左视图是长方形,一定相同,故本选项不合题意题意;
B、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;
C、主视图和左视图都是圆,一定相同,故选项不符合题意;
D、主视图是长方形,左视图是正方形,故本选项符合题意;
故选:D.
分别确定每个几何体的主视图和左视图即可作出判断.
本题考查了简单几何体的三视图,确定三视图是关键.
3.【答案】C
【解析】解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;
B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;
C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;
D、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.
故选:C.
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4.【答案】B
【解析】解:∵l1∥l2,∠1=70°,
∴∠3=∠1=70°,
∵l3∥l4,
∴∠2=180°-∠3=180°-70°=110°,
故选:B.
根据平行线的性质即可得到结论.
此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补.
5.【答案】A
【解析】解:由题意得:210×210×210B=210+10+10=230B,
故选:A.
列出算式,进行计算即可.
本题考查同底数幂的乘法,底数不变,指数相加是计算法则.
6.【答案】C
【解析】解:∵点A(-1,y1)、B(2,y2)、C(3,y3)在反比例函数y=-的图象上,
∴y1=-=6,y2=-=-3,y3=-=-2,
又∵-3<-2<6,
∴y1>y3>y2.
故选:C.
根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.
本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.
7.【答案】A
【解析】解:由题意可知:1☆x=x2-x-1=0,
∴△=1-4×1×(-1)=5>0,
故选:A.
根据新定义运算法则以及即可求出答案.
本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.
8.【答案】C
【解析】解:设我国2017年至2019年快递业务收入的年平均增长率为x,
由题意得:5000(1+x)2=7500,
故选:C.
根据题意可得等量关系:2017年的快递业务量×(1+增长率)2=2019年的快递业务量,根据等量关系列出方程即可.
此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
9.【答案】B
【解析】解:如图,设正方形D′C′O′E′是正方形OCDE沿x轴向右平移后的正方形,
∵顶点A,B的坐标分别为(-2,6)和(7,0),
∴AC=6,OC=2,OB=7,
∴BC=9,
∵四边形OCDE是正方形,
∴DE=OC=OE=2,
∴O′E′=O′C′=2,
∵E′O′⊥BC,
∴∠BO′E′=∠BCA=90°,
∴E′O′∥AC,
∴△BO′E′∽△BCA,
∴=,
∴=,
∴BO′=3,
∴OC′=7-2-3=2,
∴当点E落在AB边上时,点D的坐标为(2,2),
故选:B.
根据已知条件得到AC=6,OC=2,OB=7,求得BC=9,根据正方形的性质得到DE=OC=OE=2,求得O′E′=O′C′=2,根据相似三角形的性质得到BO′=3,于是得到结论.
本题考查了正方形的性质,坐标与图形性质,相似三角形的判定和性质,正确的识别图形是解题的关键.
10.【答案】D
【解析】解:连接BD交AC于O,
∵AD=CD,AB=BC,
∴BD垂直平分AC,
∴BD⊥AC,AO=CO,
∵AB=BC,
∴∠ACB=∠BAC=30°,
∵AC=AD=CD,
∴△ACD是等边三角形,
∴∠DAC=∠DCA=60°,
∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,
∵AB=BC=,
∴AD=CD=AB=3,
∴四边形ABCD的面积=2×=3,
故选:D.
连接BD交AC于O,根据已知条件得到BD垂直平分AC,求得BD⊥AC,AO=CO,根据等腰三角形的性质得到∠ACB=∠BAC=30°,根据等边三角形的性质得到∠DAC=∠DCA=60°,求得AD=CD=AB=3,于是得到结论.
本题考查了含30°角的直角三角形,等腰三角形的性质,等边三角形的判定和性质,熟练掌握直角三角形的性质是解题的关键.
11.【答案】
【解析】解:大于1且小于2的无理数是,答案不唯一.
故答案为:.
由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.
此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.
12.【答案】x>a
【解析】解:∵b<0<a,
∴关于x的不等式组的解集为:x>a,
故答案为:x>a.
根据关于x的不等式组的解集表示在数轴上表示方法求出x的取值范围即可.
本题考查的是在数轴上表示不等式组的解集,先根据题意得出不等式组的解集是解答此题的关键.
13.【答案】
【解析】解:自由转动转盘两次,指针所指区域所有可能出现的情况如下:
共有16种可能出现的结果,其中两次颜色相同的有4种,
∴P(两次颜色相同)==,
故答案为:.
用树状图或列表法表示所有可能出现的结果,进而求出相应的概率.
考查树状图或列表法求随机事件发生的概率,列举出所有可能出现的结果是解决问题的关键.
14.【答案】1
【解析】解:设DF,CE交于O,
∵四边形ABCDA是正方形,
∴∠B=∠DCF=90°,BC=CD=AB,
∵点E,F分别是边AB,BC的中点,
∴BE=CF,
∴△CBE≌△DCF(SAS),
∴CE=DF,∠BCE=∠CDF,
∵∠CDF+∠CFD=90°,
∴∠BCE+∠CFD=90°,
∴∠COF=90°,
∴DF⊥CE,
∴CE=DF==,
∵点G,H分别是EC,FD的中点,
∴CG=FH=,
∵∠DCF=90°,CO⊥DF,
∴CF2=OF•DF,
∴OF===,
∴OH=,OD=,
∵OC2=OF•OD,
∴OC==,
∴OG=CG-OC=-=,
∴HG===1,
故答案为:1.
设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据射影定理即可得到结论.
本题考查了射影定理,勾股定理,正方形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.
15.【答案】
【解析】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,
此时E′C+E′C最小,即:E′C+E′C=CD′,
由题意得,∠COD=∠DOB=∠BOD′=30°,
∴∠COD′=90°,
∴CD′===2,
的长l==,
∴阴影部分周长的最小值为2+=.
故答案为:.
利用轴对称的性质,得出当点E移动到点E′时,阴影部分的周长最小,此时的最小值为弧CD的长与CD′的长度和,分别进行计算即可.
本题考查与圆有关的计算,掌握轴对称的性质,弧长的计算方法是正确计算的前提,理解轴对称解决路程最短问题是关键.
16.【答案】解:
=
=a-1,
把a=+1代入a-1=+1-1=.
【解析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.
本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
17.【答案】501 5%
【解析】解:(1)将乙的成绩从小到大排列后,处在中间位置的两个数都是501,因此中位数是501,
b=1÷20=0.05=5%,
故答案为:501,5%;
(2)选择甲机器,理由:甲的不合格率较小,
(1)根据中位数的计算方法,求出乙机器分装实际质量的中位数;乙机器的不合格的有1个,调查总数为20,可求出不合格率,从而确定a、b的值;
(2)根据合格率进行判断.
本题考查中位数、众数、平均数的意义和计算方法,理解中位数、众数、平均数的意义是正确解答的关键.
18.【答案】解:(1)过A作AD⊥PM于D,延长BC交AD于E,
则四边形BMNC,四边形BMDE是矩形,
∴BC=MN=16m,DE=CN=BM=1.6m,
∵∠AED=90°,∠ACE=45°,
∴△ACE是等腰直角三角形,
∴CE=AE,
设AE=CE=x,
∴BE=16+x,
∵∠ABE=22°,
∴tan22°===0.40,
∴x≈10.7(m),
∴AD=10.7+1.6=12.3(m),
答:观星台最高点A距离地面的高度约为12.3m;
(2)∵“景点简介”显示,观星台的高度为12.6m,
∴本次测量结果的误差为12.6-12.3=0.3m,
减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.
【解析】(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,于是得到BC=MN=16m,DE=CN=BM=1.6m,求得CE=AE,设AE=CE=x,得到BE=16+x,解直角三角形即可得到结论;
(2)建议为:为了减小误差可以通过多次测量取平均值的方法.
本题考查了解直角三角形的应用--仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
19.【答案】解:(1)∵y1=k1x+b过点(0,30),(10,180),
∴,解得,
k1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元,
b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;
(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),
则k2=25×0.8=20;
(3)选择方案一所需费用更少.理由如下:
由题意可知,y1=15x+30,y2=20x.
当健身8次时,
选择方案一所需费用:y1=15×8+30=150(元),
选择方案二所需费用:y2=20×8=160(元),
∵150<160,
∴选择方案一所需费用更少.
【解析】(1)把点(0,30),(10,180)代入y1=k1x+b,得到关于k1和b的二元一次方程组,求解即可;
(2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出k2的值;
(3)将x=8分别代入y1、y2关于x的函数解析式,比较即可.
本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出y1、y2关于x的函数解析式.
20.【答案】AB=OB,EN切半圆O于F EB,EO就把∠MEN三等分
【解析】解:已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN切半圆O于F.
求证:EB,EO就把∠MEN三等分,
证明:∵EB⊥AC,
∴∠ABE=∠OBE=90°,
∵AB=OB,BE=BE,
∴△ABE≌△OBE(SAS),
∴∠1=∠2,
∵BE⊥OB,
∴BE是⊙E的切线,
∵EN切半圆O于F,
∴∠2=∠3,
∴∠1=∠2=∠3,
∴EB,EO就把∠MEN三等分.
故答案为:AB=OB,EN切半圆O于F;EB,EO就把∠MEN三等分.
根据垂直的定义得到∠ABE=∠OBE=90°,根据全等三角形的性质得到∠1=∠2,根据切线的性质得到∠2=∠3,于是得到结论.
本题考查了切线的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.
21.【答案】解:(1)∵抛物线y=-x2+2x+c与y轴正半轴分别交于点B,
∴点B(0,c),
∵OA=OB=c,
∴点A(c,0),
∴0=-c2+2c+c,
∴c=3或0(舍去),
∴抛物线解析式为:y=-x2+2x+3,
∵y=-x2+2x+3=-(x-1)2+4,
∴顶点G为(1,4);
(2)∵y=-x2+2x+3=-(x-1)2+4,
∴对称轴为直线x=1,
∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,
∴点M的横坐标为-2或4,点N的横坐标为6,
∴点M坐标为(-2,-5)或(4,-5),点N坐标(6,-21),
∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,
∴-21≤yQ≤4.
【解析】(1)先求出点B,点A坐标,代入解析式可求c的值,即可求解;
(2)先求出点M,点N坐标,即可求解.
本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练运用二次函数的性质解决问题是本题的关键.
22.【答案】5
【解析】解:(1)∵点D为的中点,
∴=,
∴BD=CD=a=5cm,
故答案为:5;
(2)∵点A是线段BC的中点,
∴AB=AC,
∵CF∥BD,
∴∠F=∠BDA,
又∵∠BAD=∠CAF,
∴△BAD≌△CAF(AAS),
∴BD=CF,
∴线段CF的长度无需测量即可得到;
(3)由题意可得:
(4)由题意画出函数yCF的图象;
由图象可得:BD=3.8cm或5cm或6.2cm时,△DCF为等腰三角形.
(1)①由=可求BD=CD=a=5cm;
②由“AAS”可证△BAD≌△CAF,可得BD=CF,即可求解;
(2)由题意可画出函数图象;
(3)结合图象可求解.
本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,动点问题的函数图象探究题,也考查了函数图象的画法,解题关键是数形结合.
23.【答案】等腰直角三角形
【解析】解:(1)∵AB绕点A逆时针旋转至AB′,
∴AB=AB',∠BAB'=60°,
∴△ABB'是等边三角形,
∴∠BB'A=60°,
∴∠DAB'=∠BAD-∠BAB'=90°-60°=30°,
∵AB'=AB=AD,
∴∠AB'D=∠ADB',
∴∠AB'D==75°,
∴∠DB'E=180°-60°-75°=45°,
∵DE⊥B'E,
∴∠B'DE=90°-45°=45°,
∴△DEB'是等腰直角三角形.
∵四边形ABCD是正方形,
∴∠BDC=45°,
∴,
同理,
∴,
∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,
∴BDB'=∠EDC,
∴△BDB'∽△CDE,
∴.
故答案为:等腰直角三角形,.
(2)①两结论仍然成立.
证明:连接BD,
∵AB=AB',∠BAB'=α,
∴∠AB'B=90°-,
∵∠B'AD=α-90°,AD=AB',
∴∠AB'D=135°-,
∴∠EB'D=∠AB'D-∠AB'B=135°-=45°,
∵DE⊥BB',
∴∠EDB'=∠EB'D=45°,
∴△DEB'是等腰直角三角形,
∴,
∵四边形ABCD是正方形,
∴,∠BDC=45°,
∴,
∵∠EDB'=∠BDC,
∴∠EDB'+∠EDB=∠BDC+∠EDB,
即∠B'DB=∠EDC,
∴△B'DB∽△EDC,
∴.
②=3或1.
若CD为平行四边形的对角线,
点B'在以A为圆心,AB为半径的圆上,取CD的中点.连接BO交⊙A于点B',
过点D作DE⊥BB'交BB'的延长线于点E,
由(1)可知△B'ED是等腰直角三角形,
∴B'D=B'E,
由(2)①可知△BDB'∽△CDE,且BB'=CE.
∴=+1=+1=+1=+1=3.
若CD为平行四边形的一边,如图3,
点E与点A重合,
∴=1.
综合以上可得=3或1.
(1)由旋转的性质得出AB=AB',∠BAB'=60°,证得△ABB'是等边三角形,可得出△DEB'是等腰直角三角形.证明△BDB'∽△CDE,得出.
(2)①得出∠EDB'=∠EB'D=45°,则△DEB'是等腰直角三角形,得出,证明△B'DB∽△EDC,由相似三角形的性质可得出.
②分两种情况画出图形,由平行四边形的性质可得出答案.
本题是四边形综合题,考查了正方形的性质,等腰直角三角形的判定与性质,旋转的性质,等边三角形的判定与性质,相似三角形的判定与性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.
2023年河南省中考数学试卷(含解析): 这是一份2023年河南省中考数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年河南省中考数学试卷(解析版): 这是一份2022年河南省中考数学试卷(解析版),共29页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
河南省中考数学试卷附解析: 这是一份河南省中考数学试卷附解析,共31页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。