|教案下载
搜索
    上传资料 赚现金
    2021年中考数学专题复习 专题37 二次函数问题(教师版含解析)
    立即下载
    加入资料篮
    2021年中考数学专题复习 专题37 二次函数问题(教师版含解析)01
    2021年中考数学专题复习 专题37 二次函数问题(教师版含解析)02
    2021年中考数学专题复习 专题37 二次函数问题(教师版含解析)03
    还剩37页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年中考数学专题复习 专题37 二次函数问题(教师版含解析)

    展开
    这是一份2021年中考数学专题复习 专题37 二次函数问题(教师版含解析),共40页。教案主要包含了对点练习等内容,欢迎下载使用。

    专题37 二次函数问题

    1.二次函数的概念:
    一般地,自变量x和y之间存在如下关系: y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。抛物线叫做二次函数的一般式。
    2.二次函数y=ax2 +bx+c(a≠0)的图像与性质


    y
    x
    O





    (1)对称轴:
    (2)顶点坐标:
    (3)与y轴交点坐标(0,c)
    (4)增减性:
    当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;
    当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小。
    3.二次函数的解析式三种形式
    (1)一般式 y=ax2 +bx+c(a≠0).已知图像上三点或三对、的值,通常选择一般式.
    (2)顶点式
    .已知图像的顶点或对称轴,通常选择顶点式。
    (3)交点式 .已知图像与轴的交点坐标、,通常选用交点式。
    4.根据图像判断a,b,c的符号
    (1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。
    (2)b ——对称轴与a 左同右异。
    (3)抛物线与y轴交点坐标(0,c)
    5.二次函数与一元二次方程的关系
    抛物线y=ax2 +bx+c与x轴交点的横坐标x1, x2 是一元二次方程ax2 +bx+c=0(a≠0)的根。
    抛物线y=ax2 +bx+c,当y=0时,抛物线便转化为一元二次方程ax2 +bx+c=0
    >0时,一元二次方程有两个不相等的实根,二次函数图像与x轴有两个交点;
    =0时,一元二次方程有两个相等的实根,二次函数图像与x轴有一个交点;
    <0时,一元二次方程有不等的实根,二次函数图像与x轴没有交点。
    6.函数平移规律:左加右减、上加下减.

    【例题1】(2020贵州黔西南)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是( )

    A. 点B坐标为(5,4) B. AB=AD C. a= D. OC•OD=16
    【答案】D
    【解析】由抛物线y=ax2+bx+4交y轴于点A,可得点A的坐标,然后由抛物线的对称性可得点B的坐标,由点B关于直线AC的对称点恰好落在线段OC上,可知∠ACO=∠ACB,再结合平行线的性质可判断∠BAC=∠ACB,从而可知AB=AD;过点B作BE⊥x轴于点E,由勾股定理可得EC的长,则点C坐标可得,然后由对称性可得点D的坐标,则OC•OD的值可计算;由勾股定理可得AD的长,由交点式可得抛物线的解析式,根据以上计算或推理,对各个选项作出分析即可.
    解:因为抛物线y=ax2+bx+4交y轴于点A,所以A(0,4).因为对称轴为直线x=,AB∥x轴,所以B(5,4),选项A正确,不符合题意.如答图,过点B作BE⊥x轴于点E,则BE=4,AB=5.因为AB∥x轴,所以∠BAC=∠ACO.因为点B关于直线AC的对称点恰好落在线段OC上,所以∠ACO=∠ACB,所以∠BAC=∠ACB,所以BC=AB=5.在Rt△BCE中,由勾股定理得EC=3,所以C(8,0),因为对称轴为直线x=,所以D(-3,0).在Rt△ADO中,OA=4,OD=3,所以AD=5,所以AB=AD,选项B正确,不符合题意.设y=ax2+bx+4=a(x+3)(x-8),将A(0,4)代入得4=a(0+3)(0-8),解得a=,选项C正确,不符合题意.因为OC=8,OD=3,所以OC•OD=24,选项D错误,符合题意,因此本题选D.

    【点拨】本题考查了二次函数的性质、等腰三角形的判定与性质及勾股定理,熟练掌握二次函数的相关性质并数形结合是解题的关键.
    【对点练习】(2020湖北天门模拟)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有( )

    A.3个 B.2个 C.1个 D.0个
    【答案】A
    【点拨】根据图象可得:a>0,c>0,对称轴:。
    ①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是x=1,
    ∴。∴b+2a=0。故命题①错误。
    ②∵a>0,,∴b<0。
    又c>0,∴abc<0。故命题②正确。
    ③∵b+2a=0,∴a﹣2b+4c=a+2b﹣4b+4c=﹣4b+4c。
    ∵a﹣b+c=0,∴4a﹣4b+4c=0。∴﹣4b+4c=﹣4a。
    ∵a>0,∴a﹣2b+4c=﹣4b+4c=﹣4a<0。故命题③正确。
    ④根据图示知,当x=4时,y>0,∴16a+4b+c>0。
    由①知,b=﹣2a,∴8a+c>0。故命题④正确。
    ∴正确的命题为:①②③三个。故选A。
    【点拨】二次函数图象与系数的关系。
    【例题2】(2020•无锡)二次函数y=ax2﹣3ax+3的图象过点A(6,0),且与y轴交于点B,点M在该抛物线的对称轴上,若△ABM是以AB为直角边的直角三角形,则点M的坐标为   .
    【答案】(32,﹣9)或(32,6).
    【分析】把点A(6,0)代入y=ax2﹣3ax+3得,0=36a﹣18a+3,得到y=-16x2+12x+3,求得B(0,3),抛物线的对称轴为x=-122×(-16)=32,设点M的坐标为:(32,m),当∠ABM=90°,过B作BD⊥对称轴于D,当∠M′AB=90°,根据三角函数的定义即可得到结论.
    【解析】把点A(6,0)代入y=ax2﹣3ax+3得,0=36a﹣18a+3,
    解得:a=-16,
    ∴y=-16x2+12x+3,
    ∴B(0,3),抛物线的对称轴为x=-122×(-16)=32,
    设点M的坐标为:(32,m),
    当∠ABM=90°,
    过B作BD⊥对称轴于D,
    则∠1=∠2=∠3,
    ∴tan∠2=tan∠1=63=2,
    ∴DMBD=2,
    ∴DM=3,∴M(32,6),
    当∠M′AB=90°,∴tan∠3=M'NAN=tan∠1=63=2,
    ∴M′N=9,∴M′(32,﹣9),
    综上所述,点M的坐标为(32,﹣9)或(32,6).

    【对点练习】已知抛物线y=ax2﹣3x+c(a≠0)经过点(﹣2,4),则4a+c﹣1=   .
    【答案】-3
    【解析】二次函数图象上点的坐标特征.将点(﹣2,4)代入y=ax2﹣3x+c(a≠0),即可求得4a+c的值,进一步求得4a+c﹣1的值.
    把点(﹣2,4)代入y=ax2﹣3x+c,得
    4a+6+c=4,
    ∴4a+c=﹣2,
    ∴4a+c﹣1=﹣3,
    故答案为﹣3.
    【例题3】(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.
    (1)求抛物线的解析式及点G的坐标;
    (2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标yQ的取值范围.

    【答案】见解析。
    【分析】(1)先求出点B,点A坐标,代入解析式可求c的值,即可求解;
    (2)先求出点M,点N坐标,即可求解.
    【解析】(1)∵抛物线y=﹣x2+2x+c与y轴正半轴分别交于点B,
    ∴点B(0,c),
    ∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),
    ∴抛物线解析式为:y=﹣x2+2x+3,
    ∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴顶点G为(1,4);
    (2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴对称轴为直线x=1,
    ∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,
    ∴点M的横坐标为﹣2或4,点N的横坐标为6,
    ∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标(6,﹣21),
    ∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,
    ∴﹣21≤yQ≤4.
    【对点练习】如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴
    是x=2.
    (1)求抛物线的解析式;
    (2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

    【答案】见解析。

    【解析】(1)由题意得,,
    解得b=4,c=3,
    ∴抛物线的解析式为.y=x2﹣4x+3;
    (2)∵点A与点C关于x=2对称,
    ∴连接BC与x=2交于点P,则点P即为所求,
    根据抛物线的对称性可知,点C的坐标为(3,0),
    y=x2﹣4x+3与y轴的交点为(0,3),
    ∴设直线BC的解析式为:y=kx+b,

    解得,k=﹣1,b=3,
    ∴直线BC的解析式为:y=﹣x+3,
    则直线BC与x=2的交点坐标为:(2,1)
    ∴点P的交点坐标为:(2,1).

    【点拨】本题考查的是待定系数法求二次函数的解析式和最短路径问题,掌握待定系数法求解析式的一般步骤和轴对称的性质是解题的关键.

    一、选择题
    1.(2020•鄂州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B,与y轴交于点C.下列结论:①abc<0,②2a+b<0,③4a﹣2b+c>0,④3a+c>0,其中正确的结论个数为(  )

    A.1个 B.2个 C.3个 D.4个
    【答案】B
    【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴求出2a与b的关系.
    【解析】①∵由抛物线的开口向上知a>0,
    ∵对称轴位于y轴的右侧,
    ∴b<0.
    ∵抛物线与y轴交于负半轴,
    ∴c<0,
    ∴abc>0;
    故错误;②对称轴为x=-b2a<1,得2a>﹣b,即2a+b>0,
    故错误;
    ③如图,当x=﹣2时,y>0,4a﹣2b+c>0,
    故正确;
    ④∵当x=﹣1时,y=0,
    ∴0=a﹣b+c<a+2a+c=3a+c,即3a+c>0.
    故正确.
    综上所述,有2个结论正确.
    2.(2020•株洲)二次函数y=ax2+bx+c,若ab<0,a﹣b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则(  )
    A.y1=﹣y2 B.y1>y2
    C.y1<y2 D.y1、y2的大小无法确定
    【答案】B
    【分析】首先分析出a,b,x1的取值范围,然后用含有代数式表示y1,y2,再作差法比较y1,y2的大小.
    【解析】∵a﹣b2>0,b2≥0,
    ∴a>0.
    又∵ab<0,
    ∴b<0,
    ∵x1<x2,x1+x2=0,
    ∴x2=﹣x1,x1<0.
    ∵点A(x1,y1),B(x2,y2)在该二次函数y=ax2+bx+c的图象上,
    ∴y1=ax12+bx1+c,y2=ax22+bx2+c=ax12-bx1+c.
    ∴y1﹣y2=2bx1>0.
    ∴y1>y2.
    3.(2020•襄阳)二次函数y=ax2+bx+c的图象如图所示,下列结论:
    ①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.
    其中正确的有(  )

    A.4个 B.3个 C.2个 D.1个
    【答案】B
    【分析】二次函数图象与系数的关系以及二次函数的性质,逐一分析判断即可.
    【解析】①∵抛物线开口向上,且与y轴交于负半轴,
    ∴a>0,c<0,
    ∴ac<0,结论①正确;
    ②∵抛物线对称轴为直线x=1,
    ∴-b2a=1,
    ∴b=﹣2a,
    ∵抛物线经过点(﹣1,0),
    ∴a﹣b+c=0,
    ∴a+2a+c=0,即3a+c=0,结论②正确;
    ③∵抛物线与x轴由两个交点,
    ∴b2﹣4ac>0,即4ac﹣b2<0,结论③正确;
    ④∵抛物线开口向上,且抛物线对称轴为直线x=1,
    ∴当x<1时,y随x的增大而减小,结论④错误;

    4.(2020•广东)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为(  )
    A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣3
    【答案】C
    【分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.
    【解析】二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),
    ∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),
    ∴所得的图象解析式为y=(x﹣2)2+2.
    5.(2020•菏泽)一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是(  )
    A. B. C. D.
    【答案】B
    【分析】先由二二次函数y=ax2+bx+c的图象得到字母系数的正负,再与一次函数y=acx+b的图象相比较看是否一致.
    【解析】A.由抛物线可知,a>0,b<0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项错误;
    B.由抛物线可知,a>0,b>0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项正确;
    C.由抛物线可知,a<0,b>0,c>0,则ac<0,由直线可知,ac<0,b<0,故本选项错误;
    D.由抛物线可知,a<0,b<0,c>0,则ac<0,由直线可知,ac>0,b>0,故本选项错误.
    6.(2020•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=12.有下列结论:
    ①abc>0;
    ②关于x的方程ax2+bx+c=a有两个不等的实数根;
    ③a<-12.
    其中,正确结论的个数是(  )
    A.0 B.1 C.2 D.3
    【答案】C
    【分析】由题意得到抛物线的开口向下,对称轴-b2a=12,b=﹣a,判断a,b与0的关系,得到abc<0,即可判断①;
    根据题意得到抛物线开口向下,顶点在x轴上方,即可判断②;
    根据抛物线y=ax2+bx+c经过点(2,0)以及b=﹣a,得到4a﹣2a+c=0,即可判断③.
    【解析】∵抛物线的对称轴为直线x=12,
    而点(2,0)关于直线x=12的对称点的坐标为(﹣1,0),
    ∵c>1,
    ∵抛物线开口向下,
    ∴a<0,
    ∵抛物线对称轴为直线x=12,
    ∴-b2a=12,
    ∴b=﹣a>0,
    ∴abc<0,故①错误;
    ∵抛物线开口向下,与x轴有两个交点,
    ∴顶点在x轴的上方,
    ∵a<0,
    ∴抛物线与直线y=a有两个交点,
    ∴关于x的方程ax2+bx+c=a有两个不等的实数根;故②正确;
    ∵抛物线y=ax2+bx+c经过点(2,0),
    ∴4a+2b+c=0,
    ∵b=﹣a,
    ∴4a﹣2a+c=0,即2a+c=0,
    ∴﹣2a=c,
    ∵c>1,
    ∴﹣2a>1,
    ∴a<-12,故③正确,
    7.(2020•陕西)在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    【答案】D
    【分析】根据平移规律得到平移后抛物线的顶点坐标,然后结合m的取值范围判断新抛物线的顶点所在的象限即可.
    【解析】∵y=x2﹣(m﹣1)x+m=(x-m-12)2+m-(m-1)24,
    ∴该抛物线顶点坐标是(m-12,m-(m-1)24),
    ∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(m-12,m-(m-1)24-3),
    ∵m>1,
    ∴m﹣1>0,
    ∴m-12>0,
    ∵m-(m-1)24-3=4m-(m2-2m+1)-124=-(m-3)2-44=-(m-3)24-1<0,
    ∴点(m-12,m-(m-1)24-3)在第四象限;
    8.(2019哈尔滨)将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线
    为( )
    A. B.
    C. D.
    【答案】B
    【解析】将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选B.
    9.(2019年陕西省)已知抛物线,当时,,且当时, y的值随x值的增大而减小,则m的取值范围是( ).
    A. B. C. D.
    【答案】C
    【解析】根据“当时,”,得到一个关于m不等式,在根据抛物线,可知抛物线开口向上,再在根据“当时, y的值随x值的增大而减小”,可知抛物线的对称轴在直线的右侧或者是直线,从而列出第二个关于m的不等式,两个不等式联立,即可解得答案.
    因为抛物线,
    所以抛物线开口向上.
    因为当时,,
    所以 ①,
    因为当时, y的值随x值的增大而减小,
    所以可知抛物线的对称轴在直线的右侧或者是直线,
    所以②,
    联立不等式①,②,解得.
    10.(2019广西梧州)已知,关于的一元二次方程的解为,,则下列结论正确的是  
    A. B. C. D.
    【答案】A
    【解析】关于的一元二次方程的解为,,可以看作二次函数与轴交点的横坐标,
    二次函数与轴交点坐标为,,如图:
    当时,就是抛物线位于轴上方的部分,此时,或;

    ,;

    故选:A.

    二、填空题
    11.(2020•南京)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是   .
    【答案】①②④.
    【分析】利用二次函数的性质一一判断即可.
    【解析】①∵二次函数y=﹣(x﹣m)2+m+1(m为常数)与函数y=﹣x2的二次项系数相同,
    ∴该函数的图象与函数y=﹣x2的图象形状相同,故结论①正确;
    ②∵在函数y=﹣(x﹣m)2+m2+1中,令x=0,则y=﹣m2+m2+1=1,
    ∴该函数的图象一定经过点(0,1),故结论②正确;
    ③∵y=﹣(x﹣m)2+m2+1,
    ∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;
    ④∵抛物线开口向下,当x=m时,函数y有最大值m2+1,
    ∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确.
    12.(2020•连云港)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为   min.
    【答案】3.75.
    【分析】根据二次函数的性质可得.
    【解析】根据题意:y=﹣0.2x2+1.5x﹣2,
    当x=-1.52×(-0.2)=3.75时,y取得最大值,
    则最佳加工时间为3.75min.
    13.(2020•泰安)已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:
    x
    ﹣5
    ﹣4
    ﹣2
    0
    2
    y
    6
    0
    ﹣6
    ﹣4
    6
    下列结论:
    ①a>0;
    ②当x=﹣2时,函数最小值为﹣6;
    ③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;
    ④方程ax2+bx+c=﹣5有两个不相等的实数根.
    其中,正确结论的序号是   .(把所有正确结论的序号都填上)
    【答案】①③④.
    【分析】任意取表格中的三组对应值,求出二次函数的关系式,再根据二次函数的图象与系数之间的关系进行判断即可.
    【解析】将(﹣4,0)(0,﹣4)(2,6)代入y=ax2+bx+c得,
    16a-4b+c=0c=-44a+2b+c=6,解得,a=1b=3c=-4,
    ∴抛物线的关系式为y=x2+3x﹣4,
    a=1>0,因此①正确;
    对称轴为x=-32,即当x=-32时,函数的值最小,因此②不正确;
    把(﹣8,y1)(8,y2)代入关系式得,y1=64﹣24﹣4=36,y2=64+24﹣4=84,因此③正确;
    方程ax2+bx+c=﹣5,也就是x2+3x﹣4=﹣5,即方x2+3x+1=0,由b2﹣4ac=9﹣4=5>0可得x2+3x+1=0有两个不相等的实数根,因此④正确;
    正确的结论有:①③④
    14.(2020•哈尔滨)抛物线y=3(x﹣1)2+8的顶点坐标为   .
    【答案】(1,8).
    【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).
    【解析】∵抛物线y=3(x﹣1)2+8是顶点式,
    ∴顶点坐标是(1,8).
    15.(2020•无锡)请写出一个函数表达式,使其图象的对称轴为y轴:   .
    【答案】y=x2(答案不唯一).
    【分析】根据形如y=ax2的二次函数的性质直接写出即可.
    【解析】∵图象的对称轴是y轴,
    ∴函数表达式y=x2(答案不唯一),
    故答案为:y=x2(答案不唯一).
    16.(2020•上海)如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是   .
    【答案】y=x2+3.
    【分析】直接根据抛物线向上平移的规律求解.
    【解析】抛物线y=x2向上平移3个单位得到y=x2+3.
    17.(2020•黔东南州)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是   .

    【答案】﹣3<x<1.
    【分析】根据物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.
    【解析】∵物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,
    ∴抛物线与x轴的另一个交点为(1,0),
    由图象可知,当y<0时,x的取值范围是﹣3<x<1.
    18.(2020•灌南县一模)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为   .
    【答案】(﹣1,4).
    【分析】把二次函数解析式转化成顶点式形式,然后写出顶点坐标即可.
    【解析】∵y=﹣x2﹣2x+3
    =﹣(x2+2x+1﹣1)+3
    =﹣(x+1)2+4,
    ∴顶点坐标为(﹣1,4).
    19.(2019黑龙江哈尔滨)二次函数的最大值是 .
    【答案】8
    【解析】∵a=﹣1<0,∴y有最大值,
    当x=6时,y有最大值8.故答案为8.
    20.(2019江苏镇江)已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是 .
    【答案】.
    【解析】本题考查了二次函数的应用,解题的关键是根据线段AB的长不大于4,求出a的取值范围,再利用二次函数的增减性求代数式a2+a+1的最小值.
    ∵y=ax2+4ax+4a+1=a(x+2)2+1,
    ∴该抛物线的顶点坐标为(-2,1),对称轴为直线x=-2.
    ∵抛物线过点A(m,3),B(n,3)两点,
    ∴当y=3时,a(x+2)2+1=3,(x+2)2=,当a>0时,x=-2±.
    ∴A(-2-,3),B(-2+,3).
    ∴AB=2.
    ∵线段AB的长不大于4,
    ∴2≤4.
    ∴a≥.
    ∵a2+a+1=(a+)2+,
    ∴当a=,(a2+a+1)min=(a+)2+=.
    21.(2019内蒙古赤峰)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b>0;②a﹣b+c=0;③一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;④当x<﹣1或x>3时,y>0.上述结论中正确的是   .(填上所有正确结论的序号)


    【答案】②③④
    【解析】由图可知,对称轴x=1,与x轴的一个交点为(3,0),
    ∴b=﹣2a,与x轴另一个交点(﹣1,0),
    ①∵a>0,
    ∴b<0;
    ∴①错误;
    ②当x=﹣1时,y=0,
    ∴a﹣b+c=0;
    ②正确;
    ③一元二次方程ax2+bx+c+1=0可以看作函数y=ax2+bx+c与y=﹣1的交点,
    由图象可知函数y=ax2+bx+c与y=﹣1有两个不同的交点,
    ∴一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;
    ∴③正确;
    ④由图象可知,y>0时,x<﹣1或x>3
    ∴④正确;
    故答案为②③④.
    三、解答题
    22.(2020•陕西)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.
    (1)求该抛物线的表达式;
    (2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.

    【答案】见解析。
    【分析】(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式,即可求解;
    (2)由题意得:PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,分点P在抛物线对称轴右侧、点P在抛物线对称轴的左侧两种情况,分别求解即可.
    【解析】(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得12=9+3b+c-3=4-2b+c,解得b=2c=-3,
    故抛物线的表达式为:y=x2+2x﹣3;
    (2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x=0,则y=﹣3,
    故点A、B的坐标分别为(﹣3,0)、(1,0);点C(0,﹣3),
    故OA=OC=3,
    ∵∠PDE=∠AOC=90°,
    ∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,
    设点P(m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m=2,
    故n=22+2×2﹣5=5,故点P(2,5),
    故点E(﹣1,2)或(﹣1,8);
    当点P在抛物线对称轴的左侧时,由抛物线的对称性可得,点P(﹣4,5),此时点E坐标同上,
    综上,点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).
    23.(2020•凉山州)如图,二次函数y=ax2+bx+x的图象过O(0,0)、A(1,0)、B(32,32)三点.
    (1)求二次函数的解析式;
    (2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;
    (3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.

    【答案】见解析。
    【分析】(1)将点O、A、B的坐标代入抛物线表达式,即可求解;
    (2)由点B的坐标知,直线BO的倾斜角为30°,则OB中垂线(CD)与x负半轴的夹角为60°,故设CD的表达式为:y=-3x+b,而OB中点的坐标为(34,34),将该点坐标代入CD表达式,即可求解;
    (3)过点P作y轴额平行线交CD于点H,PH=-3x+3-(233x2-233x)=-233x2-33x+3,即可求解.
    【解析】(1)将点O、A、B的坐标代入抛物线表达式得c=0a+b+c=032=94a+32b+c,解得a=-233b=-233c=0,
    故抛物线的表达式为:y=233x2-233x;
    (2)由点B的坐标知,直线BO的倾斜角为30°,则OB中垂线(CD)与x负半轴的夹角为60°,
    故设CD的表达式为:y=-3x+b,而OB中点的坐标为(34,34),
    将该点坐标代入CD表达式并解得:b=3,
    故直线CD的表达式为:y=-3x+3;
    (3)设点P(x,233x2-233x),则点Q(x,-3x+3),

    则PQ=-3x+3-(233x2-233x)=-233x2-33x+3,
    ∵-233<0,故PQ有最大值,此时点P的坐标为(-14,27316).
    24.(2020•黑龙江)如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.
    (1)求a的值;
    (2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.

    【答案】见解析。
    【分析】(1)由y=﹣x2+(a+1)x﹣a,令y=0,即﹣x2+(a+1)x﹣a=0,可求出A、B坐标结合三角形的面积,解出a=﹣3;
    (2)根据题意P的纵坐标为±3,分别代入解析式即可求得横坐标,从而求得P的坐标.
    【解析】(1)∵y=﹣x2+(a+1)x﹣a,
    令x=0,则y=﹣a,
    ∴C(0,﹣a),
    令y=0,即﹣x2+(a+1)x﹣a=0
    解得x1=a,x2=1
    由图象知:a<0
    ∴A(a,0),B(1,0)
    ∵S△ABC=6
    ∴12(1﹣a)(﹣a)=6
    解得:a=﹣3,(a=4舍去);
    (2)∵a=﹣3,
    ∴C(0,3),
    ∵S△ABP=S△ABC.
    ∴P点的纵坐标为±3,
    把y=3代入y=﹣x2﹣2x+3得﹣x2﹣2x+3=3,解得x=0或x=﹣2,
    把y=﹣3代入y=﹣x2﹣2x+3得﹣x2﹣2x+3=﹣3,解得x=﹣1+7或x=﹣1-7,
    ∴P点的坐标为(﹣2,3)或(﹣1+7,﹣3)或(﹣1-7,﹣3).
    25.(2020•衡阳)在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(﹣1,0),(2,0).
    (1)求这个二次函数的表达式;
    (2)求当﹣2≤x≤1时,y的最大值与最小值的差;
    (3)一次函数y=(2﹣m)x+2﹣m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.

    【答案】见解析。
    【分析】(1)由二次函数的图象经过(﹣1,0)和(2,0)两点,组成方程组再解即可求得二次函数的表达式;
    (2)求得抛物线的对称轴,根据图象即可得出当x=﹣2,函数有最大值4;当x=12是函数有最小值-94,进而求得它们的差;
    (3)由题意得x2﹣x﹣2=(2﹣m)x+2﹣m,整理得x2+(m﹣3)x+m﹣4=0,因为a<2<b,a≠b,△=(m﹣3)2﹣4×(m﹣4)=(m﹣5)2>0,把x=3代入(2﹣m)x+2﹣m>x2﹣x﹣2,解得m<-12.
    【解析】(1)由二次函数y=x2+px+q的图象经过(﹣1,0)和(2,0)两点,
    ∴1-p+q=04+2p+q=0,解得p=-1q=-2,
    ∴此二次函数的表达式y=x2﹣x﹣2;
    (2)∵抛物线开口向上,对称轴为直线x=-1+22=12,
    ∴在﹣2≤x≤1范围内,当x=﹣2,函数有最大值为:y=4+2﹣2=4;当x=12是函数有最小值:y=14-12-2=-94,
    ∴的最大值与最小值的差为:4﹣(-94)=254;
    (3)∵y=(2﹣m)x+2﹣m与二次函数y=x2﹣x﹣2图象交点的横坐标为a和b,
    ∴x2﹣x﹣2=(2﹣m)x+2﹣m,整理得
    x2+(m﹣3)x+m﹣4=0
    ∵a<3<b
    ∴a≠b
    ∴△=(m﹣3)2﹣4×(m﹣4)=(m﹣5)2>0
    ∴m≠5
    ∵a<3<b
    当x=3时,(2﹣m)x+2﹣m>x2﹣x﹣2,
    把x=3代入(2﹣m)x+2﹣m>x2﹣x﹣2,解得m<-12
    ∴m的取值范围为m<-12.

    26.(2020•甘孜州)某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.
    (1)求k,b的值;
    (2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.
    【答案】见解析。
    【分析】(1)利用待定系数法可求解析式;
    (2)由销售该商品每周的利润w=销售单价×销售量,可求函数解析式,由二次函数的性质可求解.
    【解析】(1)由题意可得:30=50k+b10=70k+b,
    ∴k=-1b=80,
    答:k=﹣1,b=80;
    (2)∵w=(x﹣40)y=(x﹣40)(﹣x+80)=﹣(x﹣60)2+400,
    ∴当x=60时,w有最大值为400元,
    答:销售该商品每周可获得的最大利润为400元.
    27.(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.
    (1)判断点B是否在直线y=x+m上,并说明理由;
    (2)求a,b的值;
    (3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.
    【答案】见解析。
    【分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m上;
    (2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;
    (3)设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(p2,p24+q),根据题意得出p24+q=p2+1,由抛物线y=﹣x+px+q与y轴交点的纵坐标为q,即可得出q=p24-p2-1=-14(p﹣1)2+54,从而得出q的最大值.
    【解析】(1)点B是在直线y=x+m上,理由如下:
    ∵直线y=x+m经过点A(1,2),
    ∴2=1+m,解得m=1,
    ∴直线为y=x+1,
    把x=2代入y=x+1得y=3,
    ∴点B(2,3)在直线y=x+m上;
    (2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,
    ∴抛物线只能经过A、C两点,
    把A(1,2),C(2,1)代入y=ax2+bx+1得a+b+1=24a+2b+1=1,
    解得a=﹣1,b=2;
    (3)由(2)知,抛物线为y=﹣x2+2x+1,
    设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(p2,p24+q),
    ∵顶点仍在直线y=x+1上,
    ∴p24+q=p2+1,
    ∴q=p24-p2-1,
    ∵抛物线y=﹣x+px+q与y轴的交点的纵坐标为q,
    ∴q=p24-p2-1=-14(p﹣1)2+54,
    ∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为54.
    28.(2020•上海)在平面直角坐标系xOy中,直线y=-12x+5与x轴、y轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A.
    (1)求线段AB的长;
    (2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC=5,求这条抛物线的表达式;
    (3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.

    【答案】见解析。
    【分析】(1)先求出A,B坐标,即可得出结论;
    (2)设点C(m,-12m+5),则BC=52|m,进而求出点C(2,4),最后将点A,C代入抛物线解析式中,即可得出结论;
    (3)将点A坐标代入抛物线解析式中得出b=﹣10a,代入抛物线解析式中得出顶点D坐标为(5,﹣25a),即可得出结论.
    【解析】(1)针对于直线y=-12x+5,
    令x=0,y=5,∴B(0,5),
    令y=0,则-12x+5=0,∴x=10,
    ∴A(10,0),
    ∴AB=52+102=55;
    (2)设点C(m,-12m+5),
    ∵B(0,5),
    ∴BC=m2+(-12m+5-5)2=52|m|,
    ∵BC=5,
    ∴52|m|=5,∴m=±2,
    ∵点C在线段AB上,∴m=2,∴C(2,4),
    将点A(10,0),C(2,4)代入抛物线y=ax2+bx(a≠0)中,得100a+10b=04a+2b=4,
    ∴a=-14b=52,
    ∴抛物线y=-14x2+52x;
    (3)∵点A(10,0)在抛物线y=ax2+bx中,得100a+10b=0,
    ∴b=﹣10a,
    ∴抛物线的解析式为y=ax2﹣10ax=a(x﹣5)2﹣25a,
    ∴抛物线的顶点D坐标为(5,﹣25a),
    将x=5代入y=-12x+5中,得y=-12×5+5=52,
    ∵顶点D位于△AOB内,
    ∴0<﹣25a<52,
    ∴-110<a<0;
    29.(2020•苏州)如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3).
    (1)求b的值;
    (2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值.

    【答案】见解析。
    【分析】(1)抛物线的对称轴为x=2,即12b=2,解得:b=﹣4,即可求解;
    (2)求出点B、C的坐标分别为(1,﹣3)、(3,﹣3),则BC=2,而四边形PBCQ为平行四边形,则PQ=BC=2,故x2﹣x1=2,即可求解.
    【解析】(1)直线与抛物线的对称轴交于点D(2,﹣3),
    故抛物线的对称轴为x=2,即12b=2,解得:b=﹣4,
    故抛物线的表达式为:y=x2﹣4x;
    (2)把y=﹣3代入y=x2﹣4x并解得x=1或3,
    故点B、C的坐标分别为(1,﹣3)、(3,﹣3),则BC=2,
    ∵四边形PBCQ为平行四边形,
    ∴PQ=BC=2,故x2﹣x1=2,
    又∵y1=x12﹣4x1,y2=x22﹣4x2,|y1﹣y2|=2,
    故|(x12﹣4x1)﹣(x22﹣4x2)=2,|x1+x2﹣4|=1.
    ∴x1+x2=5或x1+x2=﹣3,
    由x2-x1=2x1+x2=5,解得x1=32x2=72;
    由x2-x1=2x1+x2=3,解得x1=12x2=52.
    30.(2020•台州)用各种盛水容器可以制作精致的家用流水景观(如图1).
    科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系式为s2=4h(H﹣h).

    应用思考:现用高度为20cm的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离hcm处开一个小孔.
    (1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?
    (2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;
    (3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求垫高的高度及小孔离水面的竖直距离.
    【答案】见解析。
    【分析】(1)将s2=4h(20﹣h)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可;
    (2)设存在a,b,使两孔射出水的射程相同,则4a(20﹣a)=4b(20﹣b),利用因式分解变形即可得出答案;
    (3)设垫高的高度为m,写出此时s2关于h的函数关系式,根据二次函数的性质可得答案.
    【解析】(1)∵s2=4h(H﹣h),
    ∴当H=20cm时,s2=4h(20﹣h)=﹣4(h﹣10)2+400,
    ∴当h=10cm时,s2有最大值400,
    ∴当h=10cm时,s有最大值20cm.
    ∴当h为10cm时,射程s有最大值,最大射程是20cm;
    (2)∵s2=4h(20﹣h),
    设存在a,b,使两孔射出水的射程相同,则有:
    4a(20﹣a)=4b(20﹣b),
    ∴20a﹣a2=20b﹣b2,
    ∴a2﹣b2=20a﹣20b,
    ∴(a+b)(a﹣b)=20(a﹣b),
    ∴(a﹣b)(a+b﹣20)=0,
    ∴a﹣b=0,或a+b﹣20=0,
    ∴a=b或a+b=20;
    (3)设垫高的高度为m,则s2=4h(20+m﹣h)=﹣4(h-20+m2)2+(20+m)2,
    ∴当h=20+m2cm时,smax=20+m=20+16,
    ∴m=16cm,此时h=20+m2=18cm.
    ∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.
    31.(2020•滨州)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.
    (1)当售价为55元/千克时,每月销售水果多少千克?
    (2)当月利润为8750元时,每千克水果售价为多少元?
    (3)当每千克水果售价为多少元时,获得的月利润最大?
    【答案】见解析。
    【分析】(1)由月销售量=500﹣(销售单价﹣50)×10,可求解;
    (2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;
    (3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,有二次函数的性质可求解.
    【解析】(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;
    (2)设每千克水果售价为x元,
    由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],
    解得:x1=65,x2=75,
    答:每千克水果售价为65元或75元;
    (3)设每千克水果售价为m元,获得的月利润为y元,
    由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,
    ∴当m=70时,y有最大值为9000元,
    答:当每千克水果售价为70元时,获得的月利润最大值为9000元.
    32.(2019贵州贵阳)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).
    (1)求二次函数的表达式;
    (2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;
    (3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.

    【答案】见解析。
    【解析】(1)∵点A(﹣1,0)与点B关于直线x=1对称,
    ∴点B的坐标为(3,0),
    代入y=x2+bx+c,得:

    解得,
    所以二次函数的表达式为y=x2﹣2x﹣3;
    (2)如图所示:

    由抛物线解析式知C(0,﹣3),
    则OB=OC=3,
    ∴∠OBC=45°,
    若点P在点C上方,则∠OBP=∠OBC﹣∠PBC=30°,
    ∴OP=OBtan∠OBP=3×=,
    ∴CP=3﹣;
    若点P在点C下方,则∠OBP′=∠OBC+∠P′BC=60°,
    ∴OP′=OBtan∠OBP′=3×=3,
    ∴CP=3﹣3;
    综上,CP的长为3﹣或3﹣3;
    (3)若a+1<1,即a<0,
    则函数的最小值为(a+1)2﹣2(a+1)﹣3=2a,
    解得a=1﹣(正值舍去);
    若a<1<a+1,即0<a<1,
    则函数的最小值为1﹣2﹣3=2a,
    解得:a=﹣2(舍去);
    若a>1,
    则函数的最小值为a2﹣2a﹣3=2a,
    解得a=2+(负值舍去);
    综上,a的值为1﹣或2+.
    【点拨】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、三角函数的运用、二次函数的图象与性质及分类讨论思想的运用.

    相关教案

    2021年中考数学专题复习 专题52 中考数学最值问题(教师版含解析): 这是一份2021年中考数学专题复习 专题52 中考数学最值问题(教师版含解析),共40页。教案主要包含了解决几何最值问题的要领,解决代数最值问题的方法要领等内容,欢迎下载使用。

    2021年中考数学专题复习 专题41 概率问题(教师版含解析): 这是一份2021年中考数学专题复习 专题41 概率问题(教师版含解析),共31页。教案主要包含了确定事件和随机事件,概率,解答题等内容,欢迎下载使用。

    2021年中考数学专题复习 专题39 中考函数综合类问题(教师版含解析): 这是一份2021年中考数学专题复习 专题39 中考函数综合类问题(教师版含解析),共38页。教案主要包含了对点练习等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021年中考数学专题复习 专题37 二次函数问题(教师版含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map