还剩14页未读,
继续阅读
2020版高考新创新一轮复习数学(理)通用版讲义:第九章第三节 椭圆
展开
第三节 椭圆
[考纲要求]
1.掌握椭圆的定义、几何图形、标准方程.
2.掌握椭圆的简单几何性质(范围、对称性、顶点、离心率).
3.了解椭圆的简单应用.
4.理解数形结合的思想.
突破点一 椭圆的定义和标准方程
1.椭圆的定义
平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数.
(1)若a>c,则集合P为椭圆.
(2)若a=c,则集合P为线段.
(3)若a<c,则集合P为空集.
2.椭圆的标准方程
(1)焦点在x轴上的椭圆的标准方程是+=1(a>b>0),焦点为F1(-c,0),F2(c,0),其中c2=a2-b2.
(2)焦点在y轴上的椭圆的标准方程是+=1(a>b>0),焦点为F1(0,-c),F2(0,c),其中c2=a2-b2.
一、判断题(对的打“√”,错的打“×”)
(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.( )
(2)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.( )
(3)+=1(a≠b)表示焦点在y轴上的椭圆.( )
答案:(1)× (2)√ (3)×
二、填空题
1.已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是________.
答案:4
2.如果方程+=1表示焦点在x轴上的椭圆,则实数a的取值范围是________.
答案:(-6,-2)∪(3,+∞)
3.已知椭圆C经过点A(2,3),且点F(2,0)为其右焦点,则椭圆C的标准方程为____________.
答案:+=1
考法一 椭圆的定义及应用
[例1] (1)(2019·衡水调研)已知A(-1,0),B是圆F:x2-2x+y2-11=0(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为( )
A.+=1 B.-=1
C.-=1 D.+=1
(2)(2019·齐齐哈尔八中模拟)如图,椭圆+=1(a>2)的左、右焦点分别为F1,F2,点P是椭圆上的一点,若∠F1PF2=60°,那么△PF1F2的面积为( )
A. B.
C. D.
[解析] (1)由题意得|PA|=|PB|,∴|PA|+|PF|=|PB|+|PF|=r=2>|AF|=2,
∴点P的轨迹是以A,F为焦点的椭圆,且a=,c=1,∴b=,
∴动点P的轨迹方程为+=1,故选D.
(2)设|PF1|=m,|PF2|=n,则cos 60°===,化简得,3mn=4(a2-c2)=4b2,∵b2=4,∴mn=,∴S△PF1F2=mnsin 60°=.故选D.
[答案] (1)D (2)D
[方法技巧]
椭圆焦点三角形中的常用结论
以椭圆+=1(a>b>0)上一点P(x0,y0)(y0≠0)和焦点F1(-c,0),F2(c,0)为顶点的 △PF1F2中,若∠F1PF2=θ,则
(1)|PF1|+|PF2|=2a.
(2)4c2=|PF1|2+|PF2|2-2|PF1||PF2|·cos θ.
(3) S△PF1F2=|PF1||PF2|·sin θ,当|y0|=b,即P为短轴端点时,S△PF1F2取最大值为bc.
(4)焦点三角形的周长为2(a+c).
考法二 椭圆的标准方程
[例2] (1)如图,已知椭圆C的中心为原点O,F(-2,0)为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=4,则椭圆C的方程为( )
A.+=1
B.+=1
C.+=1
D.+=1
(2)(2019·武汉调研)一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2,)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆方程为____________.
[解析] (1)设F′为椭圆的右焦点,连接PF′,在△POF中,由余弦定理,得cos∠POF==,则|PF′|==8,由椭圆定义,知2a=4+8=12,所以a=6,又c=2,所以b2=16.
故椭圆C的方程为+=1.
(2)∵椭圆的中心在原点,焦点F1,F2在x轴上,
∴可设椭圆方程为+=1(a>b>0),
∵P(2,)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,
∴又a2=b2+c2,∴a=2,b=,c=,
∴椭圆方程为+=1.
[答案] (1)C (2)+=1
[方法技巧] 待定系数法求椭圆方程的思路
1.已知椭圆C:+=1(a>b>0)的长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
解析:选B 由题意可得=,2a=6,解得a=3,c=1,则b==,
所以椭圆C的方程为+=1.故选B.
2.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且椭圆G上一点到两个焦点的距离之和为12,则椭圆G的方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
解析:选A 依题意设椭圆G的方程为+=1(a>b>0),∵椭圆上一点到两焦点的距离之和为12,∴2a=12,∴a=6,∵椭圆的离心率为,∴e== =,即=,解得b2=9,∴椭圆G的方程为+=1,故选A.
3.P为椭圆+=1上一点,F1,F2分别是椭圆的左焦点和右焦点,过P点作PH⊥F1F2于点H,若PF1⊥PF2,则|PH|=( )
A. B.
C.8 D.
解析:选D 由椭圆+=1得a2=25,b2=9,
则c===4,
∴|F1F2|=2c=8.
由椭圆的定义可得|PF1|+|PF2|=2a=10,
∵PF1⊥PF2,∴|PF1|2+|PF2|2=82.
∴2|PF1|·|PF2|
=(|PF1|+|PF2|)2-(|PF1|2+|PF2|2)
=100-64=36,
∴|PF1|·|PF2|=18.
又S△PF1F2=|PF1|·|PF2|=|F1F2|·|PH|,
∴|PH|==.故选D.
突破点二 椭圆的几何性质
标准方程
+=1(a>b>0)
+=1(a>b>0)
图形
性 质
范围
-a≤x≤a,-b≤y≤b
-b≤x≤b,-a≤y≤a
对称性
对称轴:坐标轴;对称中心:(0,0)
顶点
A1(-a,0),A2(a,0),
B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a),
B1(-b,0),B2(b,0)
离心率
e=,且e∈(0,1)
a,b,c的关系
c2=a2-b2
一、判断题(对的打“√”,错的打“×”)
(1)椭圆+=1(a>b>0)的长轴长等于a.( )
(2)椭圆上的点到焦点的距离的最小值为a-c.( )
(3)椭圆的离心率e越小,椭圆越圆.( )
答案:(1)× (2)√ (3)√
二、填空题
1.若焦点在y轴上的椭圆+=1的离心率为,则m的值为________.
答案:
2.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为________.
答案:(0,±)
3.已知椭圆的中心在原点,焦点在x轴上,离心率为,且过P(-5,4),则椭圆的方程为________.
答案:+=1
考法一 椭圆的离心率
椭圆的离心率是一个重要的基本量,在椭圆中有着极其特殊的作用,也是高考常考的知识点,主要考查两类问题:一是求椭圆的离心率;二是求椭圆离心率的取值范围.
[例1] (1)(2018·全国卷Ⅱ)已知F1,F2是椭圆C:+=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为( )
A. B.
C. D.
(2)(2019·江西临川二中、新余四中联考)已知F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A,B上下两点,若△ABF2是锐角三角形,则该椭圆的离心率e的取值范围是( )
A.(0,-1) B.(-1,1)
C.(0,-1) D.(-1,1)
[解析] (1)如图,作PB⊥x轴于点B.由题意可设|F1F2|=|PF2|=2,则c=1.由∠F1F2P=120°,可得|PB|=,|BF2|=1,故|AB|=a+1+1=a+2,tan ∠PAB===,解得a=4,所以e==.
(2)∵F1,F2分别是椭圆+=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A,B上下两点,∴F1(-c,0),F2(c,0),A,B,∵△ABF2是锐角三角形,∴∠AF2F1<45°,∴tan∠AF2F1<1,∴<1,整理得b2<2ac,∴a2-c2<2ac,两边同时除以a2,并整理,得e2+2e-1>0,解得e>-1或e<--1(舍去),∵0<e<1,∴椭圆的离心率e的取值范围是(-1,1),故选B.
[答案] (1)D (2)B
[方法技巧]
1.求椭圆离心率的3种方法
(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.
(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.
(3)通过取特殊值或特殊位置,求出离心率.
[提醒] 在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.
2.求椭圆离心率范围的2种方法
方法
解读
适合题型
几何法
利用椭圆的几何性质,设P(x0,y0)为椭圆+=1(a>b>0)上一点,则|x0|≤a,a-c≤|PF1|≤a+c等,建立不等关系,或者根据几何图形的临界情况建立不等关系
题设条件有明显的几何关系
直接法
根据题目中给出的条件或根据已知条件得出不等关系,直接转化为含有a,b,c的不等关系式
题设条件直接有不等关系
考法二 与椭圆性质有关的最值范围问题
[例2] (1)(2017·全国卷Ⅰ)设A,B是椭圆C:+=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是( )
A.(0,1]∪[9,+∞) B.(0, ]∪[9,+∞)
C.(0,1]∪[4,+∞) D.(0, ]∪[4,+∞)
(2)(2019·合肥质检)如图,焦点在x轴上的椭圆+=1的离心率e=,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则·的最大值为________.
[解析] (1)当0<m<3时,焦点在x轴上,
要使C上存在点M满足∠AMB=120°,
则≥tan 60°=,即≥,
解得0<m≤1.
当m>3时,焦点在y轴上,
要使C上存在点M满足∠AMB=120°,
则≥tan 60°=,即≥,解得m≥9.
故m的取值范围为(0,1]∪[9,+∞).
(2)由题意知a=2,
因为e==,
所以c=1,b2=a2-c2=3.
故椭圆方程为+=1.
设P点坐标为(x0,y0).
所以-2≤x0≤2,-≤y0≤.
因为F(-1,0),A(2,0),
=(-1-x0,-y0),=(2-x0,-y0),
所以·=x-x0-2+y=x-x0+1=(x0-2)2.
则当x0=-2时,·取得最大值4.
[答案] (1)A (2)4
[方法技巧]
与椭圆有关的最值或范围问题的求解方法
(1)利用数形结合、几何意义,尤其是椭圆的性质,求最值或取值范围.
(2)利用函数,尤其是二次函数求最值或取值范围.
(3)利用不等式,尤其是基本不等式求最值或取值范围.
(4)利用一元二次方程的判别式求最值或取值范围.
[提醒] 求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系.
1.已知椭圆+=1(a>b>0)的左顶点为M,上顶点为N,右焦点为F,若·=0,则椭圆的离心率为( )
A. B.
C. D.
解析:选D 由题意知,M(-a,0),N(0,b),F(c,0),∴=(-a,-b),=(c,-b).∵·=0,∴-ac+b2=0,即b2=ac.又b2=a2-c2,∴a2-c2=ac.∴e2+e-1=0,解得e=或e=(舍去).∴椭圆的离心率为,故选D.
2.如图,F1,F2是双曲线C1:x2-=1与椭圆C2的公共焦点,点A是C1,C2在第一象限内的交点,若|F1F2|=|F1A|,则C2的离心率是( )
A. B.
C. D.
解析:选C 设椭圆的长半轴长为a.由题意可知,|F1F2|=|F1A|=6,∵|F1A|-|F2A|=2,∴|F2A|=4,∴|F1A|+|F2A|=10,∴2a=10,∴C2的离心率是=.故选C.
3.已知椭圆C:+y2=1的两焦点为F1,F2,点P(x0,y0)满足0<+y<1,则|PF1|+|PF2|的取值范围是________.
解析:由点P(x0,y0)满足0<+y<1,可知P(x0,y0)一定在椭圆内(不包括原点),因为a=,b=1,所以由椭圆的定义可知|PF1|+|PF2|<2a=2,当P(x0,y0)与F1或F2重合时,|PF1|+|PF2|=2,又|PF1|+|PF2|≥|F1F2|=2,故|PF1|+|PF2|的取值范围是[2,2).
答案:[2,2)
[课时跟踪检测]
[A级 基础题——基稳才能楼高]
1.椭圆mx2+ny2+mn=0(m<n<0)的焦点坐标是( )
A.(0,±) B.(±,0)
C.(0,±) D.(±,0)
解析:选C 化为标准方程是+=1,
∵m<n<0,∴0<-n<-m.
∴焦点在y轴上,且c==.
2.与椭圆9x2+4y2=36有相同焦点,且短轴长为2的椭圆的标准方程为( )
A.+=1 B.x2+=1
C.+y2=1 D.+=1
解析:选B 椭圆9x2+4y2=36可化为+=1,可知焦点在y轴上,焦点坐标为(0,±),
故可设所求椭圆方程为+=1(a>b>0),则c=.
又2b=2,即b=1,所以a2=b2+c2=6,
则所求椭圆的标准方程为x2+=1.
3.已知P为椭圆+=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为( )
A.5 B.7
C.13 D.15
解析:选B 由题意知椭圆的两个焦点F1,F2分别是两圆的圆心,且|PF1|+|PF2|=10,从而|PM|+|PN|的最小值为|PF1|+|PF2|-1-2=7.
4.已知椭圆+=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若=2,则椭圆的离心率是( )
A. B.
C. D.
解析:选D ∵=2,∴||=2||.又∵PO∥BF,∴==,即=,∴e==.
5.(2019·长沙一模)椭圆的焦点在x轴上,中心在原点,其上、下顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆的标准方程为( )
A.+=1 B.+y2=1
C.+=1 D.+=1
解析:选C 由条件可知b=c=,a=2,所以椭圆的标准方程为+=1.故选C.
6.已知F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,若椭圆C上存在点P,使得线段PF1的中垂线恰好经过焦点F2,则椭圆C离心率的取值范围是( )
A. B.
C. D.
解析:选C 如图所示,∵线段PF1的中垂线经过F2,
∴|PF2|=|F1F2|=2c,即椭圆上存在一点P,使得|PF2|=2c.
∴a-c≤2c≤a+c.
∴e=∈.
[B级 保分题——准做快做达标]
1.(2019·武汉模拟)曲线+=1与曲线+=1(k<9)的( )
A.长轴长相等 B.短轴长相等
C.离心率相等 D.焦距相等
解析:选D 曲线+=1表示焦点在x轴上的椭圆,其长轴长为10,短轴长为6,焦距为8,离心率为.曲线+=1(k<9)表示焦点在x轴上的椭圆,其长轴长为2,短轴长为2,焦距为8,离心率为 .对照选项,知D正确.故选D.
2.(2019·德阳模拟)设P为椭圆C:+=1上一点,F1,F2分别是椭圆C的左、右焦点,且△PF1F2的重心为点G,若|PF1|∶|PF2|=3∶4,那么△GPF1的面积为( )
A.24 B.12
C.8 D.6
解析:选C ∵P为椭圆C:+=1上一点,|PF1|∶|PF2|=3∶4,|PF1|+|PF2|=2a=14,∴|PF1|=6,|PF2|=8,又∵|F1F2|=2c=2=10,∴易知△PF1F2是直角三角形,S△PF1F2=|PF1|·|PF2|=24,
∵△PF1F2的重心为点G,∴S△PF1F2=3S△GPF1,∴△GPF1的面积为8,故选C.
3.斜率为1的直线l与椭圆+y2=1相交于A,B两点,则|AB|的最大值为( )
A.2 B.
C. D.
解析:选C 设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为y=x+t,
由消去y,得5x2+8tx+4(t2-1)=0,
则x1+x2=-t,x1x2=.
∴|AB|=|x1-x2|
=·
=·
=·,
当t=0时,|AB|max=.
4.(2019·贵阳摸底)P是椭圆+=1(a>b>0)上的一点,A为左顶点,F为右焦点,PF⊥x轴,若tan∠PAF=,则椭圆的离心率e为( )
A. B.
C. D.
解析:选D 不妨设点P在第一象限,因为PF⊥x轴,所以xP=c,将xP=c代入椭圆方程得yP=,即|PF|=,则tan∠PAF===,结合b2=a2-c2,整理得2c2+ac-a2=0,两边同时除以a2得2e2+e-1=0,解得e=或e=-1(舍去).故选D.
5.(2019·长郡中学选拔考试)已知椭圆C:+=1(a>b>0)与圆D:x2+y2-2ax+a2=0交于A,B两点,若四边形OADB(O为原点)是菱形,则椭圆C的离心率为( )
A. B.
C. D.
解析:选B 由已知可得圆D:(x-a)2+y2=a2,圆心D(a,0),则菱形OADB对角线的交点的坐标为,将x=代入圆D的方程得y=±,不妨设点A在x轴上方,即A,代入椭圆C的方程可得+=1,所以a2=b2=a2-c2,解得a=2c,所以椭圆C的离心率e==.
6.(2019·沙市中学测试)已知椭圆C:+=1(a>b>0)的离心率为,双曲线x2-y2=1的渐近线与椭圆C有4个交点,以这4个交点为顶点的四边形的面积为8,则椭圆C的方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
解析:选C 由题意知双曲线x2-y2=1的渐近线方程为y=±x,由椭圆的对称性可知以这4个交点为顶点的四边形是正方形,由四边形的面积为8,知正方形的边长为2,所以点(,)在椭圆上,所以+=1.①
又椭圆的离心率为,
所以=,所以a2=2b2.②
由①②得a2=6,b2=3,所以椭圆C的方程为+=1.故选C.
7.(2019·安阳模拟)已知F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且·(+)=0(O为坐标原点),若||=||,则椭圆的离心率为( )
A.- B.
C.- D.
解析:选A 以OF1,OP为邻边作平行四边形,根据向量加法的平行四边形法则,由·(+)=0知,此平行四边形的对角线垂直,即此平行四边形为菱形,∴||= ||,∴△F1PF2是直角三角形,即PF1⊥PF2.设|PF2|=x,则|PF1|=x,结合椭圆的性质和三角形勾股定理可得∴e===-.故选A.
8.(2019·西宁复习检测)在平面直角坐标系xOy中,P是椭圆+=1上的一个动点,点A(1,1),B(0,-1),则|PA|+|PB|的最大值为( )
A.5 B.4
C.3 D.2
解析:选A ∵椭圆的方程为+=1,∴a2=4,b2=3,c2=1,
∴B(0,-1)是椭圆的一个焦点,
设另一个焦点为C(0,1),如图所示,
根据椭圆的定义知,|PB|+|PC|=4,
∴|PB|=4-|PC|,∴|PA|+|PB|=4+|PA|-|PC|≤4+|AC|=5.
9.已知点P是椭圆+=1(x≠0,y≠0)上的动点,F1,F2分别是椭圆的左、右焦点,O是坐标原点,若M是∠F1PF2的平分线上一点,且·=0,则||的取值范围是( )
A.[0,3) B.(0,2)
C.[2,3) D.(0,4]
解析:选B 如图,延长F1M交PF2的延长线于点G.
∵·=0,∴⊥.
又MP为∠F1PF2的平分线,
∴|PF1|=|PG|,且M为F1G的中点.
∵O为F1F2的中点,∴OM綊F2G.
∵|F2G|=||PF2|-|PG||=||PF1|-|PF2||,
∴||=|2a-2|PF2||=|4-|PF2||.
∵4-2<|PF2|<4或4<|PF2|<4+2,
∴||∈(0,2).
10.已知F1(-c,0),F2(c,0)为椭圆+=1的两个焦点,P在椭圆上且满足·=c2,则此椭圆离心率的取值范围是( )
A. B.
C. D.
解析:选B 设P(x,y),则+=1,y2=b2-x2,-a≤x≤a,=(-c-x,-y),=(c-x,-y).
所以·=x2-c2+y2=x2+b2-c2=x2+b2-c2.
因为-a≤x≤a,所以b2-c2≤·≤b2.
所以b2-c2≤c2≤b2.
所以2c2≤a2≤3c2.
所以≤≤.故选B.
11.设e是椭圆+=1的离心率,且e=,则实数k的值是________.
解析:当k>4 时,有e= =,解得k=;
当0<k<4时,有e= =,解得k=.
故实数k的值为或.
答案:或
12.(2019·湖北稳派教育联考)已知椭圆+=1(a>b>0)的半焦距为c,且满足c2-b2+ac<0,则该椭圆的离心率e的取值范围是________.
解析:∵c2-b2+ac<0,∴c2-(a2-c2)+ac<0,即2c2-a2+ac<0,∴2-1+<0,即2e2+e-1<0,解得-1<e<.又∵0<e<1,∴0<e<.∴椭圆的离心率e的取值范围是.
答案:
13.如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若∠B1PA2为钝角,则此椭圆的离心率的取值范围为______.
解析:设椭圆的方程为+=1(a>b>0),∠B1PA2为钝角可转化为,所夹的角为钝角,则(a,-b)·(-c,-b)<0,即b2<ac,则a2-c2<ac,故2+-1>0,即e2+e-1>0,解得e>或e<,又0<e<1,所以<e<1.
答案:
14.(2019·辽宁联考)设F1,F2分别是椭圆+=1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为________.
解析:在椭圆+=1中,a=5,b=4,c=3,所以焦点坐标分别为F1(-3,0),F2(3,0).根据椭圆的定义得|PM|+|PF1|=|PM|+(2a-|PF2|)=10+(|PM|-|PF2|).
∵|PM|-|PF2|≤|MF2|,当且仅当P在直线MF2上时取等号,
∴当点P与图中的点P0重合时,有(|PM|-|PF2|)max==5,此时得|PM|+|PF1|的最大值,为10+5=15.
答案:15
15.(2019·武汉调研)设O为坐标原点,动点M在椭圆C:+y2=1(a>1,a∈R)上,过O的直线交椭圆C于A,B两点,F为椭圆C的左焦点.
(1)若△FAB的面积的最大值为1,求a的值;
(2)若直线MA,MB的斜率乘积等于-,求椭圆C的离心率.
解:(1)S△FAB=|OF|·|yA-yB|≤|OF|==1,所以a=.
(2)由题意可设A(x0,y0),B(-x0,-y0),M(x,y),则+y2=1,+y=1,
kMA·kMB=·====-=-,
所以a2=3,所以a=,所以c==,
所以椭圆的离心率e===.
16.(2019·广东七校联考)已知动点M到定点F1(-2,0)和F2(2,0)的距离之和为4.
(1)求动点M的轨迹C的方程;
(2)设N(0,2),过点P(-1,-2)作直线l,交C于不同于N的两点A,B,直线NA,NB的斜率分别为k1,k2,求k1+k2的值.
解:(1)由椭圆的定义,可知点M的轨迹是以F1,F2为焦点,4为长轴长的椭圆.由c=2,a=2,得b=2.故动点M的轨迹C的方程为+=1.
(2)当直线l的斜率存在时,设其方程为y+2=k(x+1),
由得(1+2k2)x2+4k(k-2)x+2k2-8k=0.
Δ=[4k(k-2)]2-4(1+2k2)(2k2-8k)>0,则k>0或k<-.
设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.
从而k1+k2=+==2k-(k-4)=4.
当直线l的斜率不存在时,得A,B.所以k1+k2=4.
综上,恒有k1+k2=4.
[考纲要求]
1.掌握椭圆的定义、几何图形、标准方程.
2.掌握椭圆的简单几何性质(范围、对称性、顶点、离心率).
3.了解椭圆的简单应用.
4.理解数形结合的思想.
突破点一 椭圆的定义和标准方程
1.椭圆的定义
平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数.
(1)若a>c,则集合P为椭圆.
(2)若a=c,则集合P为线段.
(3)若a<c,则集合P为空集.
2.椭圆的标准方程
(1)焦点在x轴上的椭圆的标准方程是+=1(a>b>0),焦点为F1(-c,0),F2(c,0),其中c2=a2-b2.
(2)焦点在y轴上的椭圆的标准方程是+=1(a>b>0),焦点为F1(0,-c),F2(0,c),其中c2=a2-b2.
一、判断题(对的打“√”,错的打“×”)
(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.( )
(2)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.( )
(3)+=1(a≠b)表示焦点在y轴上的椭圆.( )
答案:(1)× (2)√ (3)×
二、填空题
1.已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是________.
答案:4
2.如果方程+=1表示焦点在x轴上的椭圆,则实数a的取值范围是________.
答案:(-6,-2)∪(3,+∞)
3.已知椭圆C经过点A(2,3),且点F(2,0)为其右焦点,则椭圆C的标准方程为____________.
答案:+=1
考法一 椭圆的定义及应用
[例1] (1)(2019·衡水调研)已知A(-1,0),B是圆F:x2-2x+y2-11=0(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为( )
A.+=1 B.-=1
C.-=1 D.+=1
(2)(2019·齐齐哈尔八中模拟)如图,椭圆+=1(a>2)的左、右焦点分别为F1,F2,点P是椭圆上的一点,若∠F1PF2=60°,那么△PF1F2的面积为( )
A. B.
C. D.
[解析] (1)由题意得|PA|=|PB|,∴|PA|+|PF|=|PB|+|PF|=r=2>|AF|=2,
∴点P的轨迹是以A,F为焦点的椭圆,且a=,c=1,∴b=,
∴动点P的轨迹方程为+=1,故选D.
(2)设|PF1|=m,|PF2|=n,则cos 60°===,化简得,3mn=4(a2-c2)=4b2,∵b2=4,∴mn=,∴S△PF1F2=mnsin 60°=.故选D.
[答案] (1)D (2)D
[方法技巧]
椭圆焦点三角形中的常用结论
以椭圆+=1(a>b>0)上一点P(x0,y0)(y0≠0)和焦点F1(-c,0),F2(c,0)为顶点的 △PF1F2中,若∠F1PF2=θ,则
(1)|PF1|+|PF2|=2a.
(2)4c2=|PF1|2+|PF2|2-2|PF1||PF2|·cos θ.
(3) S△PF1F2=|PF1||PF2|·sin θ,当|y0|=b,即P为短轴端点时,S△PF1F2取最大值为bc.
(4)焦点三角形的周长为2(a+c).
考法二 椭圆的标准方程
[例2] (1)如图,已知椭圆C的中心为原点O,F(-2,0)为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=4,则椭圆C的方程为( )
A.+=1
B.+=1
C.+=1
D.+=1
(2)(2019·武汉调研)一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2,)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆方程为____________.
[解析] (1)设F′为椭圆的右焦点,连接PF′,在△POF中,由余弦定理,得cos∠POF==,则|PF′|==8,由椭圆定义,知2a=4+8=12,所以a=6,又c=2,所以b2=16.
故椭圆C的方程为+=1.
(2)∵椭圆的中心在原点,焦点F1,F2在x轴上,
∴可设椭圆方程为+=1(a>b>0),
∵P(2,)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,
∴又a2=b2+c2,∴a=2,b=,c=,
∴椭圆方程为+=1.
[答案] (1)C (2)+=1
[方法技巧] 待定系数法求椭圆方程的思路
1.已知椭圆C:+=1(a>b>0)的长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
解析:选B 由题意可得=,2a=6,解得a=3,c=1,则b==,
所以椭圆C的方程为+=1.故选B.
2.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且椭圆G上一点到两个焦点的距离之和为12,则椭圆G的方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
解析:选A 依题意设椭圆G的方程为+=1(a>b>0),∵椭圆上一点到两焦点的距离之和为12,∴2a=12,∴a=6,∵椭圆的离心率为,∴e== =,即=,解得b2=9,∴椭圆G的方程为+=1,故选A.
3.P为椭圆+=1上一点,F1,F2分别是椭圆的左焦点和右焦点,过P点作PH⊥F1F2于点H,若PF1⊥PF2,则|PH|=( )
A. B.
C.8 D.
解析:选D 由椭圆+=1得a2=25,b2=9,
则c===4,
∴|F1F2|=2c=8.
由椭圆的定义可得|PF1|+|PF2|=2a=10,
∵PF1⊥PF2,∴|PF1|2+|PF2|2=82.
∴2|PF1|·|PF2|
=(|PF1|+|PF2|)2-(|PF1|2+|PF2|2)
=100-64=36,
∴|PF1|·|PF2|=18.
又S△PF1F2=|PF1|·|PF2|=|F1F2|·|PH|,
∴|PH|==.故选D.
突破点二 椭圆的几何性质
标准方程
+=1(a>b>0)
+=1(a>b>0)
图形
性 质
范围
-a≤x≤a,-b≤y≤b
-b≤x≤b,-a≤y≤a
对称性
对称轴:坐标轴;对称中心:(0,0)
顶点
A1(-a,0),A2(a,0),
B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a),
B1(-b,0),B2(b,0)
离心率
e=,且e∈(0,1)
a,b,c的关系
c2=a2-b2
一、判断题(对的打“√”,错的打“×”)
(1)椭圆+=1(a>b>0)的长轴长等于a.( )
(2)椭圆上的点到焦点的距离的最小值为a-c.( )
(3)椭圆的离心率e越小,椭圆越圆.( )
答案:(1)× (2)√ (3)√
二、填空题
1.若焦点在y轴上的椭圆+=1的离心率为,则m的值为________.
答案:
2.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为________.
答案:(0,±)
3.已知椭圆的中心在原点,焦点在x轴上,离心率为,且过P(-5,4),则椭圆的方程为________.
答案:+=1
考法一 椭圆的离心率
椭圆的离心率是一个重要的基本量,在椭圆中有着极其特殊的作用,也是高考常考的知识点,主要考查两类问题:一是求椭圆的离心率;二是求椭圆离心率的取值范围.
[例1] (1)(2018·全国卷Ⅱ)已知F1,F2是椭圆C:+=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为( )
A. B.
C. D.
(2)(2019·江西临川二中、新余四中联考)已知F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A,B上下两点,若△ABF2是锐角三角形,则该椭圆的离心率e的取值范围是( )
A.(0,-1) B.(-1,1)
C.(0,-1) D.(-1,1)
[解析] (1)如图,作PB⊥x轴于点B.由题意可设|F1F2|=|PF2|=2,则c=1.由∠F1F2P=120°,可得|PB|=,|BF2|=1,故|AB|=a+1+1=a+2,tan ∠PAB===,解得a=4,所以e==.
(2)∵F1,F2分别是椭圆+=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A,B上下两点,∴F1(-c,0),F2(c,0),A,B,∵△ABF2是锐角三角形,∴∠AF2F1<45°,∴tan∠AF2F1<1,∴<1,整理得b2<2ac,∴a2-c2<2ac,两边同时除以a2,并整理,得e2+2e-1>0,解得e>-1或e<--1(舍去),∵0<e<1,∴椭圆的离心率e的取值范围是(-1,1),故选B.
[答案] (1)D (2)B
[方法技巧]
1.求椭圆离心率的3种方法
(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.
(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.
(3)通过取特殊值或特殊位置,求出离心率.
[提醒] 在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.
2.求椭圆离心率范围的2种方法
方法
解读
适合题型
几何法
利用椭圆的几何性质,设P(x0,y0)为椭圆+=1(a>b>0)上一点,则|x0|≤a,a-c≤|PF1|≤a+c等,建立不等关系,或者根据几何图形的临界情况建立不等关系
题设条件有明显的几何关系
直接法
根据题目中给出的条件或根据已知条件得出不等关系,直接转化为含有a,b,c的不等关系式
题设条件直接有不等关系
考法二 与椭圆性质有关的最值范围问题
[例2] (1)(2017·全国卷Ⅰ)设A,B是椭圆C:+=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是( )
A.(0,1]∪[9,+∞) B.(0, ]∪[9,+∞)
C.(0,1]∪[4,+∞) D.(0, ]∪[4,+∞)
(2)(2019·合肥质检)如图,焦点在x轴上的椭圆+=1的离心率e=,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则·的最大值为________.
[解析] (1)当0<m<3时,焦点在x轴上,
要使C上存在点M满足∠AMB=120°,
则≥tan 60°=,即≥,
解得0<m≤1.
当m>3时,焦点在y轴上,
要使C上存在点M满足∠AMB=120°,
则≥tan 60°=,即≥,解得m≥9.
故m的取值范围为(0,1]∪[9,+∞).
(2)由题意知a=2,
因为e==,
所以c=1,b2=a2-c2=3.
故椭圆方程为+=1.
设P点坐标为(x0,y0).
所以-2≤x0≤2,-≤y0≤.
因为F(-1,0),A(2,0),
=(-1-x0,-y0),=(2-x0,-y0),
所以·=x-x0-2+y=x-x0+1=(x0-2)2.
则当x0=-2时,·取得最大值4.
[答案] (1)A (2)4
[方法技巧]
与椭圆有关的最值或范围问题的求解方法
(1)利用数形结合、几何意义,尤其是椭圆的性质,求最值或取值范围.
(2)利用函数,尤其是二次函数求最值或取值范围.
(3)利用不等式,尤其是基本不等式求最值或取值范围.
(4)利用一元二次方程的判别式求最值或取值范围.
[提醒] 求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系.
1.已知椭圆+=1(a>b>0)的左顶点为M,上顶点为N,右焦点为F,若·=0,则椭圆的离心率为( )
A. B.
C. D.
解析:选D 由题意知,M(-a,0),N(0,b),F(c,0),∴=(-a,-b),=(c,-b).∵·=0,∴-ac+b2=0,即b2=ac.又b2=a2-c2,∴a2-c2=ac.∴e2+e-1=0,解得e=或e=(舍去).∴椭圆的离心率为,故选D.
2.如图,F1,F2是双曲线C1:x2-=1与椭圆C2的公共焦点,点A是C1,C2在第一象限内的交点,若|F1F2|=|F1A|,则C2的离心率是( )
A. B.
C. D.
解析:选C 设椭圆的长半轴长为a.由题意可知,|F1F2|=|F1A|=6,∵|F1A|-|F2A|=2,∴|F2A|=4,∴|F1A|+|F2A|=10,∴2a=10,∴C2的离心率是=.故选C.
3.已知椭圆C:+y2=1的两焦点为F1,F2,点P(x0,y0)满足0<+y<1,则|PF1|+|PF2|的取值范围是________.
解析:由点P(x0,y0)满足0<+y<1,可知P(x0,y0)一定在椭圆内(不包括原点),因为a=,b=1,所以由椭圆的定义可知|PF1|+|PF2|<2a=2,当P(x0,y0)与F1或F2重合时,|PF1|+|PF2|=2,又|PF1|+|PF2|≥|F1F2|=2,故|PF1|+|PF2|的取值范围是[2,2).
答案:[2,2)
[课时跟踪检测]
[A级 基础题——基稳才能楼高]
1.椭圆mx2+ny2+mn=0(m<n<0)的焦点坐标是( )
A.(0,±) B.(±,0)
C.(0,±) D.(±,0)
解析:选C 化为标准方程是+=1,
∵m<n<0,∴0<-n<-m.
∴焦点在y轴上,且c==.
2.与椭圆9x2+4y2=36有相同焦点,且短轴长为2的椭圆的标准方程为( )
A.+=1 B.x2+=1
C.+y2=1 D.+=1
解析:选B 椭圆9x2+4y2=36可化为+=1,可知焦点在y轴上,焦点坐标为(0,±),
故可设所求椭圆方程为+=1(a>b>0),则c=.
又2b=2,即b=1,所以a2=b2+c2=6,
则所求椭圆的标准方程为x2+=1.
3.已知P为椭圆+=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为( )
A.5 B.7
C.13 D.15
解析:选B 由题意知椭圆的两个焦点F1,F2分别是两圆的圆心,且|PF1|+|PF2|=10,从而|PM|+|PN|的最小值为|PF1|+|PF2|-1-2=7.
4.已知椭圆+=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若=2,则椭圆的离心率是( )
A. B.
C. D.
解析:选D ∵=2,∴||=2||.又∵PO∥BF,∴==,即=,∴e==.
5.(2019·长沙一模)椭圆的焦点在x轴上,中心在原点,其上、下顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆的标准方程为( )
A.+=1 B.+y2=1
C.+=1 D.+=1
解析:选C 由条件可知b=c=,a=2,所以椭圆的标准方程为+=1.故选C.
6.已知F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,若椭圆C上存在点P,使得线段PF1的中垂线恰好经过焦点F2,则椭圆C离心率的取值范围是( )
A. B.
C. D.
解析:选C 如图所示,∵线段PF1的中垂线经过F2,
∴|PF2|=|F1F2|=2c,即椭圆上存在一点P,使得|PF2|=2c.
∴a-c≤2c≤a+c.
∴e=∈.
[B级 保分题——准做快做达标]
1.(2019·武汉模拟)曲线+=1与曲线+=1(k<9)的( )
A.长轴长相等 B.短轴长相等
C.离心率相等 D.焦距相等
解析:选D 曲线+=1表示焦点在x轴上的椭圆,其长轴长为10,短轴长为6,焦距为8,离心率为.曲线+=1(k<9)表示焦点在x轴上的椭圆,其长轴长为2,短轴长为2,焦距为8,离心率为 .对照选项,知D正确.故选D.
2.(2019·德阳模拟)设P为椭圆C:+=1上一点,F1,F2分别是椭圆C的左、右焦点,且△PF1F2的重心为点G,若|PF1|∶|PF2|=3∶4,那么△GPF1的面积为( )
A.24 B.12
C.8 D.6
解析:选C ∵P为椭圆C:+=1上一点,|PF1|∶|PF2|=3∶4,|PF1|+|PF2|=2a=14,∴|PF1|=6,|PF2|=8,又∵|F1F2|=2c=2=10,∴易知△PF1F2是直角三角形,S△PF1F2=|PF1|·|PF2|=24,
∵△PF1F2的重心为点G,∴S△PF1F2=3S△GPF1,∴△GPF1的面积为8,故选C.
3.斜率为1的直线l与椭圆+y2=1相交于A,B两点,则|AB|的最大值为( )
A.2 B.
C. D.
解析:选C 设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为y=x+t,
由消去y,得5x2+8tx+4(t2-1)=0,
则x1+x2=-t,x1x2=.
∴|AB|=|x1-x2|
=·
=·
=·,
当t=0时,|AB|max=.
4.(2019·贵阳摸底)P是椭圆+=1(a>b>0)上的一点,A为左顶点,F为右焦点,PF⊥x轴,若tan∠PAF=,则椭圆的离心率e为( )
A. B.
C. D.
解析:选D 不妨设点P在第一象限,因为PF⊥x轴,所以xP=c,将xP=c代入椭圆方程得yP=,即|PF|=,则tan∠PAF===,结合b2=a2-c2,整理得2c2+ac-a2=0,两边同时除以a2得2e2+e-1=0,解得e=或e=-1(舍去).故选D.
5.(2019·长郡中学选拔考试)已知椭圆C:+=1(a>b>0)与圆D:x2+y2-2ax+a2=0交于A,B两点,若四边形OADB(O为原点)是菱形,则椭圆C的离心率为( )
A. B.
C. D.
解析:选B 由已知可得圆D:(x-a)2+y2=a2,圆心D(a,0),则菱形OADB对角线的交点的坐标为,将x=代入圆D的方程得y=±,不妨设点A在x轴上方,即A,代入椭圆C的方程可得+=1,所以a2=b2=a2-c2,解得a=2c,所以椭圆C的离心率e==.
6.(2019·沙市中学测试)已知椭圆C:+=1(a>b>0)的离心率为,双曲线x2-y2=1的渐近线与椭圆C有4个交点,以这4个交点为顶点的四边形的面积为8,则椭圆C的方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
解析:选C 由题意知双曲线x2-y2=1的渐近线方程为y=±x,由椭圆的对称性可知以这4个交点为顶点的四边形是正方形,由四边形的面积为8,知正方形的边长为2,所以点(,)在椭圆上,所以+=1.①
又椭圆的离心率为,
所以=,所以a2=2b2.②
由①②得a2=6,b2=3,所以椭圆C的方程为+=1.故选C.
7.(2019·安阳模拟)已知F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且·(+)=0(O为坐标原点),若||=||,则椭圆的离心率为( )
A.- B.
C.- D.
解析:选A 以OF1,OP为邻边作平行四边形,根据向量加法的平行四边形法则,由·(+)=0知,此平行四边形的对角线垂直,即此平行四边形为菱形,∴||= ||,∴△F1PF2是直角三角形,即PF1⊥PF2.设|PF2|=x,则|PF1|=x,结合椭圆的性质和三角形勾股定理可得∴e===-.故选A.
8.(2019·西宁复习检测)在平面直角坐标系xOy中,P是椭圆+=1上的一个动点,点A(1,1),B(0,-1),则|PA|+|PB|的最大值为( )
A.5 B.4
C.3 D.2
解析:选A ∵椭圆的方程为+=1,∴a2=4,b2=3,c2=1,
∴B(0,-1)是椭圆的一个焦点,
设另一个焦点为C(0,1),如图所示,
根据椭圆的定义知,|PB|+|PC|=4,
∴|PB|=4-|PC|,∴|PA|+|PB|=4+|PA|-|PC|≤4+|AC|=5.
9.已知点P是椭圆+=1(x≠0,y≠0)上的动点,F1,F2分别是椭圆的左、右焦点,O是坐标原点,若M是∠F1PF2的平分线上一点,且·=0,则||的取值范围是( )
A.[0,3) B.(0,2)
C.[2,3) D.(0,4]
解析:选B 如图,延长F1M交PF2的延长线于点G.
∵·=0,∴⊥.
又MP为∠F1PF2的平分线,
∴|PF1|=|PG|,且M为F1G的中点.
∵O为F1F2的中点,∴OM綊F2G.
∵|F2G|=||PF2|-|PG||=||PF1|-|PF2||,
∴||=|2a-2|PF2||=|4-|PF2||.
∵4-2<|PF2|<4或4<|PF2|<4+2,
∴||∈(0,2).
10.已知F1(-c,0),F2(c,0)为椭圆+=1的两个焦点,P在椭圆上且满足·=c2,则此椭圆离心率的取值范围是( )
A. B.
C. D.
解析:选B 设P(x,y),则+=1,y2=b2-x2,-a≤x≤a,=(-c-x,-y),=(c-x,-y).
所以·=x2-c2+y2=x2+b2-c2=x2+b2-c2.
因为-a≤x≤a,所以b2-c2≤·≤b2.
所以b2-c2≤c2≤b2.
所以2c2≤a2≤3c2.
所以≤≤.故选B.
11.设e是椭圆+=1的离心率,且e=,则实数k的值是________.
解析:当k>4 时,有e= =,解得k=;
当0<k<4时,有e= =,解得k=.
故实数k的值为或.
答案:或
12.(2019·湖北稳派教育联考)已知椭圆+=1(a>b>0)的半焦距为c,且满足c2-b2+ac<0,则该椭圆的离心率e的取值范围是________.
解析:∵c2-b2+ac<0,∴c2-(a2-c2)+ac<0,即2c2-a2+ac<0,∴2-1+<0,即2e2+e-1<0,解得-1<e<.又∵0<e<1,∴0<e<.∴椭圆的离心率e的取值范围是.
答案:
13.如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若∠B1PA2为钝角,则此椭圆的离心率的取值范围为______.
解析:设椭圆的方程为+=1(a>b>0),∠B1PA2为钝角可转化为,所夹的角为钝角,则(a,-b)·(-c,-b)<0,即b2<ac,则a2-c2<ac,故2+-1>0,即e2+e-1>0,解得e>或e<,又0<e<1,所以<e<1.
答案:
14.(2019·辽宁联考)设F1,F2分别是椭圆+=1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为________.
解析:在椭圆+=1中,a=5,b=4,c=3,所以焦点坐标分别为F1(-3,0),F2(3,0).根据椭圆的定义得|PM|+|PF1|=|PM|+(2a-|PF2|)=10+(|PM|-|PF2|).
∵|PM|-|PF2|≤|MF2|,当且仅当P在直线MF2上时取等号,
∴当点P与图中的点P0重合时,有(|PM|-|PF2|)max==5,此时得|PM|+|PF1|的最大值,为10+5=15.
答案:15
15.(2019·武汉调研)设O为坐标原点,动点M在椭圆C:+y2=1(a>1,a∈R)上,过O的直线交椭圆C于A,B两点,F为椭圆C的左焦点.
(1)若△FAB的面积的最大值为1,求a的值;
(2)若直线MA,MB的斜率乘积等于-,求椭圆C的离心率.
解:(1)S△FAB=|OF|·|yA-yB|≤|OF|==1,所以a=.
(2)由题意可设A(x0,y0),B(-x0,-y0),M(x,y),则+y2=1,+y=1,
kMA·kMB=·====-=-,
所以a2=3,所以a=,所以c==,
所以椭圆的离心率e===.
16.(2019·广东七校联考)已知动点M到定点F1(-2,0)和F2(2,0)的距离之和为4.
(1)求动点M的轨迹C的方程;
(2)设N(0,2),过点P(-1,-2)作直线l,交C于不同于N的两点A,B,直线NA,NB的斜率分别为k1,k2,求k1+k2的值.
解:(1)由椭圆的定义,可知点M的轨迹是以F1,F2为焦点,4为长轴长的椭圆.由c=2,a=2,得b=2.故动点M的轨迹C的方程为+=1.
(2)当直线l的斜率存在时,设其方程为y+2=k(x+1),
由得(1+2k2)x2+4k(k-2)x+2k2-8k=0.
Δ=[4k(k-2)]2-4(1+2k2)(2k2-8k)>0,则k>0或k<-.
设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.
从而k1+k2=+==2k-(k-4)=4.
当直线l的斜率不存在时,得A,B.所以k1+k2=4.
综上,恒有k1+k2=4.
相关资料
更多