2021版一轮复习名师导学物理文档:第3章章末总结 提高牛顿运动定律 学案
展开章末总结 提高
【p 】
【p 】
一、应用牛顿运动定律解题的基本思路
1.取对象——根据题意确定研究对象;
2.画力图——分析研究对象的受力情况,画出受力图;画图时,力的方向要准,大小与实际情况不能相差太大,否则可能造成假象;
3.定方向——规定正方向(或建立坐标系),通常以加速度方向为正方向较为适宜;
4.列方程——根据牛顿定律列方程,根据运动学公式列运动方程;
5.求解——统一单位,求解方程;对结果分析检验或讨论.
二、解决动力学问题的常用方法
1.合成法与分解法:当物体受两个力的作用且加速度方向已知时,常利用合成法;当物体受多个力的作用时常用正交分解法.
2.整体法与隔离法:在确定研究对象或物理过程时,经常使用的方法,整体法与隔离法是相对的.
3.图象法:在研究两个物理量之间的关系时,可利用图象法将其关系直观地显示出来,以便更准确地研究它们之间相互依赖制约的关系,如探究加速度a与合外力F的关系,可作a-F图象.
4.假设法:当物体的运动状态或受力情况不明确时,可以根据题意作某一假设,从而根据物理规律进行推断,验证或讨论.
如可假定加速度的方向,建立牛顿第二定律的方程,求出a,从而判断物体的运动情况.
5.极限分析法:用“放大”或“缩小”的思想把物理过程所蕴含的临界状态“暴露”出来的方法,本章中涉及不少,注意体会.
6.程序法:依顺序对研究对象或物理过程进行分析研究的方法,要注意对象与对象之间、过程与过程之间的关系(F、a、v、t、s等关系).
7.“超重”、“失重”分析法:当物体具有竖直向上或竖直向下的加速度a时,物体就“超重ma”或“失重ma”,据此就能够迅速快捷地判断物体对支持物的压力或对悬绳的拉力与重力的大小关系.
【p 】
1.(2019·全国卷Ⅲ)用卡车运输质量为m的匀质圆筒状工件,为使工件保持固定,将其置于两光滑斜面之间,如图所示.两斜面Ⅰ、Ⅱ固定在车上,倾角分别为30°和60°.重力加速度为g.当卡车沿平直公路匀速行驶时,圆筒对斜面Ⅰ、Ⅱ压力的大小分别为F1、F2,则( )
A.F1=mg,F2=mg B.F1=mg,F2=mg
C.F1=mg,F2=mg D.F1=mg,F2=mg
[解析] 对圆筒进行受力分析知圆筒处于三力平衡状态,受力分析如图,由几何关系可知,F1′=mgcos 30°,F2′=mgsin 30°.解得F1′=mg,F2′=mg,故由牛顿第三定律可得D正确.
[答案] D
2.(多选)(2019·全国卷Ⅲ)如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s2.由题给数据可以得出( )
A.木板的质量为1 kg
B.2~4 s内,力F的大小为0.4 N
C.0~2 s内,力F的大小保持不变
D.物块与木板之间的动摩擦因数为0.2
[解析] 结合两图象可判断出0~2 s物块和木板还未发生相对滑动,它们之间的摩擦力为静摩擦力,此过程力F等于f,故F在此过程中是变力,即C错误;2~5 s内木板与物块发生相对滑动,摩擦力转变为滑动摩擦力,对2~4 s和4~5 s列运动学方程,可解出质量m为1 kg,2~4 s内的力F为0.4 N,故A、B正确;由于不知道物块的质量,所以无法计算它们之间的动摩擦因数μ,故D错误.
[答案] AB
3.(2018·全国卷Ⅰ)如图,轻弹簧的下端固定在水平桌面上,上端放有物块P,系统处于静止状态.现用一竖直向上的力F作用在P上,使其向上做匀加速直线运动.以x表示P离开静止位置的位移,在弹簧恢复原长前,下列表示F和x之间关系的图象可能正确的是( )
[解析] 由牛顿运动定律,F-kx=ma,∴F=kx+ma.x为离开原平衡位置的位移,对比题给的四个图象,可能正确的是A.
[答案] A
4.(2019·海南卷)如图,两物块P、Q置于水平地面上,其质量分别为m、2m,两者之间用水平轻绳连接.两物块与地面之间的动摩擦因数均为μ,重力加速度大小为g,现对Q施加一水平向右的拉力F,使两物块做匀加速直线运动,轻绳的张力大小为( )
A.F-2μmg B.F+μmg
C.F-μmg D.F
[解析] 根据牛顿第二定律,对PQ的整体:F-μ·3mg=3ma;对物体P:T-μmg=ma;解得T=F,故选D.
[答案] D
5.(2019·江苏卷)如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐.A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下.接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下.最大静摩擦力等于滑动摩擦力,重力加速度为g.求:
(1)A被敲击后获得的初速度大小vA;
(2)在左边缘再次对齐的前、后,B运动加速度的大小aB、aB';
(3)B被敲击后获得的初速度大小vB.
[解析] (1)由牛顿运动定律知,A加速度的大小aA=μg
匀变速直线运动2aAL=v
解得vA=
(2)设A、B的质量均为m
对齐前,B所受合外力大小F=3μmg
由牛顿运动定律F=maB,得aB=3μg
对齐后,A、B所受合外力大小F′=2μmg
由牛顿运动定律F′=2maB′,得aB′=μg
(3)经过时间t,A、B达到共同速度v,位移分别为xA、xB,A加速度的大小等于aA
则v=aAt,v=vB-aBt
xA=aAt2,xB=vBt-aBt2
且xB-xA=L
解得vB=2
6.(2019·全国卷Ⅱ)如图(a),某同学设计了测量铁块与木板间动摩擦因数的实验.所用器材有:铁架台、长木板、铁块、米尺、电磁打点计时器、频率50 Hz的交流电源,纸带等.回答下列问题:
(1)铁块与木板间动摩擦因数μ=________________(用木板与水平面的夹角θ、重力加速度g和铁块下滑的加速度a表示).
(2)某次实验时,调整木板与水平面的夹角θ=30°.接通电源,开启打点计时器,释放铁块,铁块从静止开始沿木板滑下.多次重复后选择点迹清晰的一条纸带,如图(b)所示.图中的点为计数点(每两个相邻的计数点间还有4个点未画出).重力加速度为9.8 m/s2.可以计算出铁块与木板间的动摩擦因数为____________(结果保留2位小数).
[解析] (1)由mgsin θ-μmgcos θ=ma,
解得:μ= ①
(2)由逐差法a=得:sⅡ=(76.39-31.83)×10-2 m=44.56×10-2 m,T=0.10 s,sⅠ=(31.83-5.00)×10-2 m=26.83×10-2m,故a= m/s2=1.97 m/s2,代入①式,得:μ=≈0.35.
[答案] (1) (2)0.35
7.(2017·全国卷Ⅲ)如图,两个滑块A和B的质量分别为mA=1 kg 和mB=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:
(1)B与木板相对静止时,木板的速度;
(2)A、B开始运动时,两者之间的距离.
[解析] (1)如图所示,对A、B和木板进行受力分析,其中fA、fB分别表示物块A、B受木板摩擦力的大小,fA′、fB′和f分别表示木板受到物块A、B及地面的摩擦力大小,设运动过程中A、B及木板的加速度大小分别为aA、aB和a,根据牛顿运动定律得:
fA=mAaA ①
fB=mBaB ②
fB′-fA′-f=ma ③
且:fA=fA′=μ1mAg ④
fB=fB′=μ1mBg ⑤
f=μ2g ⑥
联立①~⑥解得:aA=5 m/s2,aB=5 m/s2,a=2.5 m/s2
故可得B向右做匀减速直线运动,A向左做匀减速直线运动,木板向右做匀加速运动;且aB=aA>a,显然经历一段时间t1之后B先与木板达到相对静止状态,且此时A、B速度大小相等,方向相反.不妨假设此时B与木板的速度大小为v1:
v1=v0-aAt1 ⑦
v1=at1 ⑧
解得:t1=0.4 s,v1=1 m/s
(2)设在t1时间内,A、B的位移大小分别为xA,xB,由运动学公式得:
xA=v0t1-aAt ⑨
xB=v0t1-aBt ⑩
此后B将与木板一起保持相对静止向前匀减速运动,直到和A相遇,这段时间内A的加速度大小仍为aA,设B和木板的加速度大小为a′,则根据牛顿运动定律得:
对木板和B:
μ2g+μ1mAg=a′ ⑪
假设经过t2时间后A、B刚好相遇,且此时速度大小为v2,为方便计算我们规定水平向右为正向,则在这段时间内速度变化:
对B和木板:v2=v1-a′t2 ⑫
对A:v2=-v1+aAt2 ⑬
联立⑪~⑬解得t2=0.3 s,可以判断此时B和木板尚未停下,则t2时间内物块A、B的位移大小假设为xA′、xB′,由运动学公式:
xA′=v1t2-aAt ⑭
xB′=v1t2-a′t ⑮
则A和B开始相距x满足:x=xA+xA′+xB+xB′ ⑯
联立解得:x=1.9 m