2021版新高考地区选考化学(人教版)一轮复习教师用书:课题19 晶体结构与性质
展开课题19 晶体结构与性质
学习任务1 晶体常识与晶体的组成和性质
一、晶体与非晶体
1.晶体与非晶体的比较
| 晶体 | 非晶体 | |
结构特征 | 结构微粒周期性有序排列 | 结构微粒无序排列 | |
性质特征 | 自范性 | 有 | 无 |
熔点 | 固定 | 不固定 | |
异同表现 | 各向异性 | 各向同性 | |
二者区 别方法 | 间接方法 | 看是否有固定的熔点 | |
科学方法 | 对固体进行X射线衍射实验 |
2.得到晶体的途径
(1)熔融态物质凝固。
(2)气态物质冷却不经液态直接凝固(凝华)。
(3)溶质从溶液中析出。
3.晶胞
(1)概念:描述晶体结构的基本单元。
(2)晶体中晶胞的排列——无隙并置
无隙:相邻晶胞之间没有任何间隙。
并置:所有晶胞都是平行排列、取向相同。
二、晶体的组成与性质
(一)四种类型的晶体
1.分子晶体
分子间通过分子间作用力结合形成的晶体,此类晶体熔、沸点低,硬度小。
2.共价晶体
原子通过共价键相互结合形成的晶体,整块晶体是一个三维的共价键网状(立体网状)结构;其物理性质的突出特点是高硬度、高熔点、高沸点。
3.离子晶体
(1)阴、阳离子通过离子键结合而成的晶体,此类晶体的熔、沸点较高。
(2)配位数:指一个离子周围最邻近的异电性离子的数目,晶体阴离子、阳离子的配位数之比等于组成中的阴离子与阳离子数目的反比。
4.金属晶体
(1)含义:金属原子通过金属键形成的晶体,金属单质形成的晶体就是金属晶体。
(2)金属键的形成:晶体中金属原子脱落下来的价电子形成遍布整块晶体的“电子气”,被所有原子所共用,从而把所有的金属原子维系在一起;金属键无饱和性、方向性。
(3)金属晶体的物理性质及解释
(二)四种晶体类型的比较
晶体类型 | 共价晶体 | 离子晶体 | 分子晶体 | 金属晶体 |
构成粒子 | 原子 | 阴、阳离子 | 分子 | 金属阳离子、 自由电子 |
粒子间 作用力 | 共价键 | 离子键 | 范德华力(某些物质还有氢键) | 金属键 |
熔、沸点 | 很高 | 较高 | 较低 | 有的很高 有的很低 |
硬度 | 很大 | 较硬而脆 | 较小 | 有的很高 有的很低 |
导电性 | 不导电或半导体 | 晶体不导电、溶于水或熔化后可导电 | 一般不导电,部分晶体溶于水可导电 | 导电 |
溶解性 | 一般难溶于任何溶剂 | 许多可溶于水 | 相似相溶 | — |
物理变化时键的变化 | 部分断裂或形成 | 只破坏分子间作用力 | 部分断裂或形成 | |
物质类别 或举例 | 金刚石、晶体硅、SiO2、SiC | 强碱、活泼金属氧化物、绝大多数盐 | 大多数非金属单质、非金属氢化物、酸、非金属氧化物(SiO2除外)、绝大多数有机物(有机盐除外) | 金属单质与合金 |
石墨属于混合型晶体,但因层内原子之间碳碳共价键的键长为1.42×10-10 m,比金刚石中碳碳共价键的键长(1.54×10-10 m)短,所以熔、沸点高于金刚石。
(三)晶体熔、沸点的比较
1.不同类型晶体熔、沸点的比较
(1)不同类型晶体的熔、沸点高低的一般规律:共价晶体>离子晶体>分子晶体。
(2)金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
2.同种类型晶体熔、沸点的比较
(1)共价晶体
原子半径越小,键长越短,键能越大,熔、沸点越高,如金刚石>碳化硅>硅。
(2)离子晶体
一般来说,阴、阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,其离子晶体的熔、沸点就越高,如MgO>MgCl2>NaCl>CsCl。
(3)分子晶体
①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常得高,如H2O>H2Te>H2Se>H2S。
②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高,如SnH4>GeH4>SiH4>CH4。
③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高,如CO>N2,CH3OH>CH3CH3。
④同分异构体支链越多,熔、沸点越低,如
CH3—CH2—CH2—CH2—CH3>。
(4)金属晶体
金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点越高,如Na<Mg<Al。
1.判断正误(正确的打“√”,错误的打“×”)。
(1)冰和碘晶体中相互作用力完全相同。( )
(2)晶体内部的微粒按一定规律周期性排列。( )
(3)凡有规则外形的固体一定是晶体。( )
(4)固体SiO2一定是晶体。( )
(5)缺角的NaCl晶体在饱和NaCl溶液中会慢慢变为完美的立方体块。( )
(6)晶胞是晶体中最小的“平行六面体”。( )
(7)区分晶体和非晶体最可靠的方法是对固体进行X射线衍射实验。( )
(8)在晶体中只要有阴离子就一定有阳离子。( )
(9)在晶体中只要有阳离子就一定有阴离子。( )
(10)共价晶体的熔点一定比金属晶体的高。( )
(11)分子晶体的熔点一定比金属晶体的低。( )
(12)离子晶体一定都含有金属元素。( )
(13)金属元素和非金属元素组成的晶体不一定是离子晶体。( )
(14)共价晶体的熔点一定比离子晶体的高。( )
答案:(1)× (2)√ (3)× (4)× (5)√ (6)× (7)√ (8)√ (9)× (10)× (11)× (12)× (13)√ (14)×
2.(教材改编题)现有下列物质:NaCl、NaOH、Na2S、H2O2、Na2S2、(NH4)2S、CO2、CCl4、C2H2、SiO2、SiC、晶体硅、金刚石、晶体氩。
(1)其中只含有离子键的离子晶体是______________________________________。
(2)其中既含有离子键又含有极性共价键的离子晶体是________________。
(3)其中既含有离子键又含有极性共价键和配位键的离子晶体是________________。
(4)其中既含有离子键又含有非极性共价键的离子晶体是________________。
(5)其中含有极性共价键的非极性分子是____________________________________。
(6)其中含有极性共价键和非极性共价键的非极性分子是________________。
(7)其中含有极性共价键和非极性共价键的极性分子是________________。
(8)其中含有极性共价键的共价晶体是_________________________________。
(9)其中不含共价键的分子晶体是______________________,只含非极性共价键的共价晶体是______________________________________________________________。
答案:(1)NaCl、Na2S (2)NaOH、(NH4)2S
(3)(NH4)2S (4)Na2S2 (5)CO2、CCl4、C2H2
(6)C2H2 (7)H2O2 (8)SiO2、SiC
(9)晶体氩 晶体硅、金刚石
晶体类型与性质的综合判断
宏观辨识与微观探析
1.(2020·乌鲁木齐模拟)下面的排序不正确的是( )
A.熔点由高到低:Na>Mg>Al
B.硬度由大到小:金刚石>碳化硅>晶体硅
C.晶体熔点由低到高:CF4<CCl4<CBr4<CI4
D.晶体熔点由高到低:NaF>NaCl>NaBr>NaI
解析:选A。A项,金属离子的电荷数越多、半径越小,金属键越强,熔点越高,则熔点由高到低为Al>Mg>Na,错误;B项,原子半径越小,键长越短,共价键越强,硬度越大,键长C—C<C—Si<Si—Si,则硬度由大到小为金刚石>碳化硅>晶体硅,正确;C项,组成和结构相似的分子晶体,相对分子质量越大,范德华力越大,晶体的熔点越高,则晶体熔点由低到高为CF4<CCl4<CBr4<CI4,正确;D项,所带电荷数相同的离子,离子半径越小,离子键越强,熔点越高,F-、Cl-、Br-、I-的离子半径依次增大,则熔点由高到低为NaF>NaCl>NaBr>NaI,正确。
2.(2020·喀什模拟)现有几组物质的熔点(℃)数据:
A组 | B组 | C组 | D组 |
金刚石:3 550 | Li:181 | HF:-83 | NaCl:801 |
硅晶体:1 410 | Na:98 | HCl:-115 | KCl:776 |
硼晶体:2 300 | K:64 | HBr:-89 | RbCl:718 |
二氧化硅:1 723 | Rb:39 | HI:-51 | CsCl:645 |
据此回答下列问题:
(1)A组属于________晶体,其熔化时克服的微粒间的作用力是____________。
(2)B组晶体共同的物理性质是________(填序号)。
①有金属光泽 ②导电性 ③导热性 ④延展性
(3)C组中HF熔点反常是由于______________________________________________。
(4)D组晶体可能具有的性质是________(填序号)。
①硬度小 ②水溶液能导电
③固体能导电 ④熔融状态能导电
解析:(1)根据表中数据可看出A组熔点很高,属于共价晶体,是由原子通过共价键形成的;
(2)B组为金属晶体,具有①②③④四条共性;
(3)HF分子间能形成氢键,故其熔点反常;
(4)D组属于离子晶体,具有②④两条性质。
答案:(1)共价 共价键 (2)①②③④
(3)HF分子间能形成氢键,其熔化时需要消耗的能量更多 (4)②④
结构决定性质类简答题突破
宏观辨识与微观探析
3.(2020·北京顺义检测)(1)冰的熔点远高于干冰,除因为H2O是极性分子、CO2是非极性分子外,还有一个重要的原因是__________________________________________。
(2)NaF的熔点________(填“>”“=”或“<”)BF的熔点,其原因是________________________________________________________________________。
(3)CO的熔点________(填“>”或“<”)N2的熔点,原因是________________。
(4)CH4、SiH4、GeH4的熔、沸点依次________(填“增大”或“减小”),其原因是________________________________________________________________________。
(5)SiO2比CO2熔点高的原因是__________________________________________。
答案:(1)H2O分子间能形成氢键
(2)> 两者均为离子化合物,且阴、阳离子的电荷数均为1,但后者的离子半径较大,离子键较弱,熔点较低
(3)> CO为极性分子而N2为非极性分子,CO分子间范德华力较大
(4)增大 三种物质均为分子晶体,结构与组成相似,相对分子质量越大,范德华力越大,熔、沸点越高
(5)SiO2为共价晶体而CO2为分子晶体
4.ⅣA族元素及其化合物在材料等方面有重要用途。回答下列问题:
(1)碳的一种单质的结构如图(a)所示。该单质的晶体类型为________,依据电子云的重叠方式,原子间存在的共价键类型有________,碳原子的杂化轨道类型为________。
(2)石墨烯是从石墨材料中剥离出来的、由单层碳原子组成的二维晶体。将氢气加入石墨烯中可制得一种新材料石墨烷。下列判断错误的是______(填字母)。
A.石墨烯是一种强度很高的材料
B.石墨烯是电的良导体而石墨烷则为绝缘体
C.石墨烯与石墨烷均为高分子化合物
D.石墨烯与H2制得石墨烷的反应属于加成反应
(3)四卤化硅SiX4的沸点和二卤化铅PbX2的熔点如图(b)所示。
①SiX4的沸点依F、Cl、Br、I次序升高的原因是____________________________。
②结合SiX4的沸点和PbX2的熔点的变化规律,可推断:依F、Cl、Br、I次序,PbX2中的化学键的离子性______、共价性______。(填“增强”“不变”或“减弱”)
(4)水杨酸第一级电离形成离子,相同温度下,水杨酸的Ka2________(填“>”“=”或“<”)苯酚()的Ka,其原因是_______________________________。
答案:(1)混合型晶体 σ键、π键 sp2 (2)C (3)①均为分子晶体,结构与组成相似,范德华力随相对分子质量增大而增大 ②减弱 增强 (4)< 中能形成分子内氢键,使其更难电离出H+
学习任务2 晶体模型与晶胞计算
1.晶体模型
晶体 | 晶体结构 | 晶体详解 | |
共价 晶体 | 金刚石 | (1)每个C与相邻的4个C以共价键结合,形成正四面体结构 (2)键角均为109°28′ (3)最小碳环由6个C原子组成且6个C原子不在同一平面内 (4)每个C参与4条C—C键的形成,C原子数与C—C键数之比为1∶2 | |
SiO2 | (1)每个Si与4个O以共价键结合,形成正四面体结构 (2)每个正面四体占有1个Si,4个“O”,n(Si)∶n(O)=1∶2 (3)最小环上有12个原子,即6个O和6个Si | ||
分子 晶体 | 干冰 | (1)每8个CO2分子构成立方体且在6个面心又各占据1个CO2分子 (2)每个CO2分子周围等距离且紧邻的CO2分子有12个 | |
冰 | 每个水分子与相邻的4个水分子以氢键相连接,含1 mol H2O的冰中,最多可形成2 mol氢键 | ||
离子 晶体 | NaCl型 | (1)每个Na+(Cl-)周围等距离且紧邻的Cl-(Na+)有6个,每个Na+周围等距离且紧邻的Na+有12个 (2)每个晶胞中含4个Na+和4个Cl- | |
CsCl型 | (1)每个Cs+(Cl-)周围等距离且紧邻的Cs+(Cl-)有6个;每个Cs+周围等距离且紧邻的Cl-有8个 (2)每个晶胞中含1个Cs+和1个Cl- | ||
混合型 晶体 | 石墨 | (1)石墨层状晶体中,层与层之间的作用是范德华力 (2)平均每个正六边形拥有的碳原子个数是2,C原子采取的杂化方式是sp2 (3)每层中存在σ键和π键,还有金属键 (4)C—C键的键长比金刚石的C—C键的键长短,熔点比金刚石的高 (5)硬度不大、有滑腻感、能导电 |
2.晶胞计算
(1)晶胞计算是晶体考查的重要知识点之一,也是考查学生分析问题、解决问题能力的较好素材。晶体结构的计算常常涉及如下数据:晶体密度、NA、M、晶体体积、微粒间距离、微粒半径、夹角等,密度的表达式往往是列等式的依据。解决这类题,一是要掌握晶体“均摊法”的原理,二是要有扎实的立体几何知识,三是要熟悉常见晶体的结构特征,并能融会贯通,举一反三。
(2)“均摊法”原理
①在使用“均摊法”计算晶胞中微粒个数时,要注意晶胞的形状,不同形状的晶胞,应先分析任意位置上的一个粒子被几个晶胞所共有,如六棱柱晶胞中,顶点、侧棱、底面上的棱、面心依次被6、3、4、2个晶胞所共有。
②在计算晶胞中粒子个数的过程中,不是任何晶胞都可用“均摊法”。
1.判断正误(正确的打“√”,错误的打“×”)。
(1)1 mol金刚石中含有C—C键为4NA。( )
(2)SiO2、金刚石、硅、MgO熔点都很高,均属于共价晶体。( )
(3)NaCl晶体中,任意一个Na+与其配位离子均可构成一个八面体。( )
(4)在CsCl晶体中,每个Cs+周围与其距离最近的Cl-有8个。( )
答案:(1)× (2)× (3)√ (4)√
2.(常见晶体结构模型)填空。
(1)在金刚石晶体中最小碳环含有________个C原子;每个C原子被________个最小碳环共用。
(2)在干冰中粒子间作用力有_________________________________。
(3)含1 mol H2O的冰中形成氢键的数目为________。
(4)在NaCl晶体中,每个Na+周围有________个距离最近且相等的Na+,每个Na+周围有________个距离最近且相等的Cl-,其空间结构为________。
(5)在CaF2晶体中,每个Ca2+周围距离最近且等距离的F-有________个;每个F-周围距离最近且等距离的Ca2+有________个。
答案:(1)6 12 (2)共价键、范德华力 (3)2NA
(4)12 6 正八面体形 (5)8 4
3.判断下列物质的晶胞结构,将对应序号填在横线上。
(1)干冰晶体________;
(2)氯化钠________;
(3)金刚石________;
(4)碘晶体________;
(5)冰晶体________;
(6)水合铜离子________。
答案:(1)② (2)① (3)④ (4)③ (5)⑥ (6)⑤
晶胞粒子数及晶体化学式的判断
证据推理与模型认知
1.Zn与S所形成化合物晶体的晶胞如图所示。
(1)在1个晶胞中,Zn2+的数目为________。
(2)该化合物的化学式为________。
解析:由晶胞图分析,含有Zn2+的数目为8×+6×=4。含有S2-的数目为4,所以化合物中Zn2+与S2-数目之比为1∶1,则化学式为ZnS。
答案:(1)4 (2)ZnS
2.利用“卤化硼法”可合成含B和N两种元素的功能陶瓷,如图为其晶胞结构示意图,则每个晶胞中含有B原子的个数为______,该功能陶瓷的化学式为________。
解析:利用晶胞结构可计算出每个晶胞中含有2个B和2个N,故化学式为BN。
答案:2 BN
3.如图是由Q、R、G三种元素组成的一种高温超导体的晶胞结构,其中R为+2价,G为-2价,则Q的化合价为________。
解析:由题图可知,每个晶胞中含有R:8×+1=2;含有G:16×+4×+2=8;含有Q:8×+2=4;则R、G、Q的个数之比为1∶4∶2,则其化学式为RQ2G4。由于R为+2价,G为-2价,所以Q为+3价。
答案:+3价
4.下图为离子晶体立体构型示意图,以M代表阳离子,以N表示阴离子(阳离子,阴离子),写出各离子晶体的组成表达式:A________、B________、C________。
解析:在A中,含M、N的个数相等,故组成为MN;在B中,含M:×4+1=(个),含N:×4+2+4×=(个),M∶N=∶=1∶3;在C中,含M:×4=(个),含N为1个,M∶N=∶1=1∶2。
答案:MN MN3 MN2
晶体密度与粒子间距的计算
证据推理与模型认知
5.如图为Na2S的晶胞,设晶体密度是ρ g·cm-3,则Na+与S2-的最短距离为______cm(NA表示阿伏加德罗常数的值,只写出计算式)。
解析:晶胞中,个数为8×+6×=4,个数为8,其个数之比为1∶2,所以代表S2-,代表Na+。
设晶胞边长为a cm,则a3·ρ=,解得a=;体对角线为× cm,所以其最短距离为体对角线的,即 cm。
答案:
6. [2018·高考全国卷Ⅰ,35(5)]Li2O具有反萤石结构,晶胞如图所示。已知晶胞参数为0.466 5 nm,阿伏加德罗常数的值为NA,则Li2O的密度为__________________ g·cm-3(列出计算式)。
解析:1个氧化锂晶胞含O的个数为8×+6×=4,含Li的个数为8,1 cm=107 nm,代入密度公式计算可得Li2O的密度为 g·cm-3。
答案:
晶体结构的相关计算
(1)
(2)晶体密度的计算公式:ρ=,其中N为1个晶胞中所含微粒数目,M为摩尔质量,NA为阿伏加德罗常数的值,V为1个晶胞的体积。
(3)晶胞质量=晶胞含有的微粒的质量=晶胞含有的微粒数×。
(4)空间利用率=×100%。
1.(晶体类型的判断)(1)[2019·高考全国卷Ⅲ,35(3)]苯胺()的晶体类型是________________。
(2)[2015·高考全国卷Ⅰ,37(4)]CO能与金属Fe形成Fe(CO)5,该化合物的熔点为253 K,沸点为376 K,其固体属于________晶体。
(3)[2015·高考全国卷Ⅱ,37(2)改编]氧和钠的氢化物所属的晶体类型分别为________和________。
答案:(1)分子晶体 (2)分子 (3)分子晶体 离子晶体
2.(晶体微粒间作用力)(1)[2018·高考全国卷Ⅲ,35(3)]ZnF2具有较高的熔点(872 ℃),其化学键类型是___________________________。
(2)[2016·高考全国卷Ⅱ,37(3)]单质铜及镍都是由________键形成的晶体。
答案:(1)离子键
(2)金属
3.(晶体熔、沸点高低的比较)(1)[2017·高考全国卷Ⅰ,35(2)]K和Cr属于同一周期,且核外最外层电子构型相同,但金属K的熔点、沸点等都比金属Cr低,原因是________________________________________________________________________。
(2)[2016·高考全国卷Ⅲ,37(4)]GaF3的熔点高于1 000 ℃,GaCl3的熔点为77.9 ℃,其原因是______________________________________________________________________。
答案:(1)K原子半径较大且价电子数较少,金属键较弱
(2)GaF3为离子晶体,GaCl3为分子晶体
4.(晶胞中微粒数及密度的计算)(1)(2019·高考江苏卷)一个Cu2O晶胞(如图所示)中,Cu原子的数目为______。
(2)(2018·高考全国卷Ⅱ)FeS2晶体的晶胞如图所示。晶胞边长为a nm,FeS2相对式量为M,阿伏加德罗常数的值为NA,其晶体密度的计算表达式为________g·cm-3;晶胞中Fe2+位于S所形成的正八面体的体心,该正八面体的边长为________nm。
(3)[2017·高考全国卷Ⅰ,35(4)(5)]①KIO3晶体是一种性能良好的非线性光学材料,具有钙钛矿型的立体结构,边长为a=0.446 nm,晶胞中K、I、O分别处于顶角、体心、面心位置,如图所示。K与O间的最短距离为____________nm,与K紧邻的O个数为____________。
②在KIO3晶胞结构的另一种表示中,I处于各顶角位置,则K处于________位置,O处于________位置。
解析:(2)该晶胞中Fe2+位于棱上和体心,个数为12×+1=4,S位于顶点和面心,个数为8×+6×=4,故晶体密度为 g÷(a×10-7 cm)3=×1021 g·cm-3。根据晶胞结构可知,S所形成的正八面体的边长为该晶胞中相邻面的面心之间的连线之长,即为晶胞边长的,故该正八面体的边长为a nm。
(3)①根据晶胞结构可知,K与O间的最短距离为面对角线的一半,即nm≈0.315 nm。与K紧邻的O的个数有12个。
答案:(1)4 (2)×1021 a
(3)①0.315(或×0.446) 12 ②体心 棱心
一、选择题:每小题只有一个选项符合题意。
1.下表所列物质晶体的类型全部正确的一组是( )
选项 | 共价晶体 | 离子晶体 | 分子晶体 |
A | 氮化硅 | 磷酸 | 单质硫 |
B | 单晶硅 | 氯化铝 | 白磷 |
C | 金刚石 | 烧碱 | 冰 |
D | 铁 | 尿素 | 冰醋酸 |
解析:选C。A项,磷酸属于分子晶体;B项,氯化铝属于分子晶体;D项,铁属于金属晶体,尿素属于分子晶体。
2.据某科学杂志报道,国外有一研究发现了一种新的球形分子,它的分子式为C60Si60,其分子结构好似中国传统工艺品“镂雕”,经测定其中包含C60,也有Si60结构。下列叙述正确的是( )
A.该物质有很高的熔点、很大的硬度
B.该物质形成的晶体属于分子晶体
C.该物质分子中Si60被包裹在C60里面
D.该物质的相对分子质量为1 200
解析:选B。由分子式及信息可知,该物质为分子晶体,A错误,B正确;Si的原子半径大于C,所以Si60的体积大于C60的体积,C错误;相对分子质量为(12+28)×60=2 400,D错误。
3.(2020·郑州联考)萤石(CaF2)是一种难溶于水的固体。下列实验事实能说明CaF2一定是离子晶体的是( )
A.CaF2难溶于水,其水溶液的导电性极弱
B.CaF2的熔、沸点较高,硬度较大
C.CaF2固体不导电,但在熔融状态下可以导电
D.CaF2在有机溶剂(如苯)中的溶解度极小
解析:选C。难溶于水,其水溶液的导电性极弱,不能说明CaF2一定是离子晶体;熔、沸点较高,硬度较大,也可能是共价晶体的性质,不能说明CaF2一定是离子晶体;熔融状态下可以导电,一定有自由移动的离子生成,说明CaF2一定是离子晶体;CaF2在有机溶剂(如苯)中的溶解度极小,只能说明CaF2是极性“分子”,不能说明CaF2一定是离子晶体。
4.下列说法正确的是(设NA为阿伏加德罗常数的值)( )
A.124 g P4中含有P—P键的个数为4NA
B.12 g石墨中含有C—C键的个数为1.5NA
C.12 g金刚石中含有C—C键的个数为4NA
D.60 g SiO2中含有Si—O键的个数为2NA
解析:选B。A项,×6NA mol-1=6NA;B项,×1.5NA mol-1=1.5NA;C项,×2NA mol-1=2NA;D项,×4NA mol-1=4NA。
5.某离子晶体的晶体结构中最小重复单元如图所示,A为阴离子,在正方体内,B为阳离子,分别在顶点和面心,则该晶体的化学式为( )
A.B2A B.BA2
C.B7A4 D.B4A7
解析:选B。根据均摊法,A在正方体内,晶胞中的8个A离子完全被这1个晶胞占用;B分别在顶点和面心,顶点上的离子被1个晶胞占用,面心上的离子被1个晶胞占用,所以1个晶胞实际占用的B离子为8×+6×=4,则该晶体的化学式为BA2。
6.二氧化硅有晶体和无定形两种形态,晶态二氧化硅主要存在于石英矿中。除石英外,SiO2还有磷石英和方英石等多种变体。方英石结构和金刚石相似,其结构单元如图。下列有关说法中正确的是( )
A.方英石晶体中存在着SiO4结构单元
B.1 mol Si形成2 mol Si—O键
C.图中所示的结构单元中实际占有18个硅原子
D.方英石晶体中,Si—O键之间的夹角为90°
解析:选A。由方英石结构示意图知方英石晶体中存在着SiO4的结构单元,A项正确;1 mol Si形成4 mol Si—O键,B项错误;题图所示的结构单元实际占有的硅原子数:8×+6×+4=8个,C项错误;方英石晶体中存在着SiO4的结构单元,说明Si—O键之间的夹角为109°28′,D项错误。
7.钛酸钡的热稳定性好,介电常数高,在小型变压器、话筒和扩音器中都有应用。钛酸钡晶体的晶胞结构如图所示,它的化学式是( )
A.BaTi8O12 B.BaTi4O5
C.BaTiO4 D.BaTiO3
解析:选D。仔细观察钛酸钡晶体的晶胞结构示意图可知,Ba2+在立方体的体心,完全属于该晶胞;Ti4+处于立方体的8个顶点,每个Ti4+为与之相连的8个立方体所共用,即每个Ti4+只有属于该晶胞;O2-处于立方体的12条棱的中点,每条棱为4个立方体共用,即每个O2-只有属于该晶胞,则钛酸钡晶体中Ba2+、Ti4+、O2-的个数比为1∶∶=1∶1∶3。
8.已知CsCl晶体的密度为ρ g·cm-3,NA为阿伏加德罗常数的值,相邻的两个Cs+的核间距为 a cm,如图所示,则CsCl的相对分子质量可以表示为( )
A.NA·a3·ρ B.
C. D.
解析:选A。每个晶胞中Cs+为8×=1个,Cl-为1个,即一个CsCl晶胞中含有一个CsCl微粒,V=a3,Mr=ρ·V·NA=ρ·a3·NA。
二、选择题:每小题有一个或两个选项符合题意。
9.下列关于晶体的说法一定正确的是( )
A.分子晶体中都存在共价键
B.如图CaTiO3晶体中每个Ti4+与12个O2-相邻
C.SiO2晶体中每个硅原子与4个氧原子以共价键相结合
D.金属晶体的熔点一定比分子晶体的熔点高
解析:选BC。有些单原子的分子晶体中不存在共价键,如稀有气体构成的晶体,A错;由题图可知,CaTiO3晶体中Ti4+位于顶点而O2-位于面心,所以CaTiO3晶体中每个Ti4+与12个O2-相邻,B正确;SiO2晶体中每个Si原子与4个O原子以共价键相结合,C正确;有些金属晶体的熔点比分子晶体的熔点低,如汞在常温下为液体,D错。
10.(2020·海口模拟)二茂铁[(C5H5)2Fe]的发现是有机金属化合物研究中具有里程碑意义的事件,它开辟了有机金属化合物研究的新领域。已知二茂铁的熔点是173 ℃(在100 ℃时开始升华),沸点是249 ℃,不溶于水,易溶于苯、乙醚等非极性溶剂。下列说法不正确的是( )
A.二茂铁属于分子晶体
B.在二茂铁结构中,C5H与Fe2+之间形成的化学键类型是离子键
C.已知环戊二烯的结构式为,则其中仅有1号碳原子采取sp3杂化
D.C5H中一定含π键
解析:选B。A项,根据二茂铁熔点低、易升华,易溶于苯、乙醚等非极性溶剂可知,二茂铁为分子晶体,正确;B项,C5H提供孤电子对,Fe2+提供空轨道,二者形成配位键,错误;C项,1号碳原子含有4个σ键,无孤电子对,杂化类型为sp3,2、3、4、5号碳原子有3个σ键,无孤电子对,杂化类型为sp2,因此仅有1号碳原子采取sp3杂化,正确;D项,C5H中碳原子没有达到饱和,存在碳碳双键,成键原子间只能形成一个σ键,另一个键必然形成π键,正确。
11.如图为冰晶体的结构模型,大球代表O原子,小球代表H原子,下列有关说法正确的是( )
A.冰晶体中每个水分子与另外四个水分子形成四面体
B.冰晶体具有空间网状结构,是共价晶体
C.水分子间通过H—O键形成冰晶体
D.冰晶体熔化时,水分子之间的空隙减小
解析:选AD。冰是水分子之间通过氢键结合而成的分子晶体,B、C错误。
12.下图分别代表NaCl、金刚石、干冰、石墨结构的一部分。下列说法正确的是( )
A.NaCl晶体只有在熔融状态下离子键被完全破坏,才能形成自由移动的离子
B.金刚石中存在的化学键只有共价键,不能导电
C.干冰中的化学键只需吸收很少的热量就可以破坏,所以干冰容易升华
D.石墨中碳原子的最外层电子都参与了共价键的形成,故熔点很高、硬度很大
解析:选B。A项,NaCl是离子化合物,在溶于水或熔融状态下离子键均能被完全破坏,错误;B项,金刚石为共价晶体,化学键只有共价键,不能导电,正确;C项,干冰属于分子晶体,干冰升华是物理变化,破坏的是分子间作用力,化学键不变,错误;D项,石墨中的碳原子用sp2杂化轨道与相邻的三个碳原子以σ键结合,形成正六边形的平面层状结构,而每个碳原子还有一个2p轨道,其中有一个2p电子,这些p轨道又都互相平行,并垂直于碳原子sp2杂化轨道构成的平面,形成了大π键,因而这些π电子可以在整个碳原子平面中运动,类似金属键的性质,石墨为层状结构,层与层之间通过范德华力连接,所以石墨的熔点很高,但硬度较小,错误。
三、非选择题
13.(1)SiC的晶体结构与晶体硅相似,其中C原子的杂化方式为________,微粒间存在的作用力是________,SiC和晶体Si的熔、沸点高低顺序是________________。
(2)氧化物MO的电子总数与SiC的相等,则M为________(填元素符号)。MO是优良的耐高温材料,其晶体结构与NaCl晶体相似。MO的熔点比CaO高,其原因是________________________________________________________________________。
(3)C、Si为同一主族的元素,CO2和SiO2的化学式相似,但结构和性质有很大的不同。CO2中C与O原子间形成σ键和π键,SiO2中Si与O原子间不形成π键。从原子半径大小的角度分析产生这种差异的原因:____________________________________________。
SiO2为________晶体,CO2为________晶体,所以熔点:CO2________(填“<”“=”或“>”)SiO2。
(4)金刚石、晶体硅、二氧化硅、CO2四种晶体的构成微粒种类分别是_________,熔化时克服的微粒间的作用力分别是______________________________________________。
解析:(1)SiC的晶体结构与晶体硅相似,晶体硅中一个硅原子与周围四个硅原子相连,呈正四面体结构,所以杂化方式是sp3,则SiC晶体中C原子杂化方式为sp3;因为SiC键的键长小于SiSi键,所以熔、沸点高低顺序为SiC>Si。
(2)SiC的电子总数是20,则该氧化物为MgO;离子键的强弱与离子晶体中离子所带电荷数成正比,与离子半径成反比,MgO与CaO中的离子所带电荷数相同,但Mg2+半径比Ca2+小,故MgO的离子键强,熔点高。
(3)Si的原子半径较大,Si、O原子间距离较大,p-p轨道肩并肩重叠程度较小,不能形成稳定的π键。SiO2为共价晶体,CO2为分子晶体,所以熔点:SiO2>CO2。
(4)金刚石、晶体硅、二氧化硅均为共价晶体,构成微粒为原子,熔化时破坏共价键;CO2为分子晶体,由分子构成,以分子间作用力结合。
答案:(1)sp3 共价键 SiC>Si
(2)Mg Mg2+半径比Ca2+小,MgO的离子键强
(3)Si的原子半径较大,Si、O原子间距离较大,pp轨道肩并肩重叠程度较小,不能形成稳定的π键 共价 分子 <
(4)原子、原子、原子、分子 共价键、共价键、共价键、分子间作用力
14.硫、钴及其化合物用途非常广泛。回答下列问题:
(1)基态Co原子价电子排布图为________________,第四电离能I4(Co)<I4(Fe),其原因是_______________________________________;Co与Ca同周期且最外层电子数相同,单质钴的熔、沸点均比钙大,其原因是________________________________________。
(2)单质硫与熟石灰加热产物之一为CaS3,S的立体构型是________,中心原子杂化方式是________。
(3)K和Na位于同一主族,K2S的熔点为840 ℃,Na2S的熔点为950 ℃,前者熔点较低的原因是_________________________________________________________________。
(4)S与O、Se、Te位于同一主族,它们的氢化物的沸点如图所示,沸点按图像所示变化的原因是_________________________________________________________。
(5)钴的一种化合物晶胞结构如图所示。
①已知A点的原子坐标参数为(0,0,0),B点的原子坐标参数为,则C点的原子坐标参数为________。
②已知晶胞参数a=0.548 5 nm,则该晶体的密度为________________g·cm-3(列出计算表达式即可)。
解析:(1)基态Co原子价电子排布式为3d74s2,价电子排布图为。
(2)S中心原子S原子上的孤电子对的数目为=2,形成σ键的数目是2,为sp3杂化,立体构型是V形。
(5)①已知A点的原子坐标参数为(0,0,0),B是面心,则B点的原子坐标参数为,C是体心,则C点的原子坐标参数为。②立方晶胞顶点粒子占,面上粒子占,晶胞内部粒子为整个晶胞所有,因此一个晶胞中含有Ti4+的个数为8×=1,O2-的个数为6×=3,Co2+的个数为1,则晶胞质量m=,晶胞参数a=0.548 5 nm=0.548 5×10-7 cm,则晶胞的体积V=(0.548 5×10-7)3 cm3,因此晶胞的密度ρ== g·cm-3。
答案:(1) 铁失去的是较稳定的3d5上的一个电子,钴失去的是3d6上的一个电子 钴的原子半径比钙小,价电子数比钙多,钴中金属键比钙中强
(2)V形 sp3 (3)K+的半径比Na+大,K2S的离子键比Na2S弱 (4)H2O分子间存在氢键,其他三种分子间不含氢键,所以H2O沸点最高;H2S、H2Se及H2Te的结构相似,随着相对分子质量的增大,范德华力增强,所以沸点逐渐升高 (5)① ②