|学案下载
搜索
    上传资料 赚现金
    2020届二轮复习(理)专题四第1讲空间几何体的三视图、表面积与体积学案
    立即下载
    加入资料篮
    2020届二轮复习(理)专题四第1讲空间几何体的三视图、表面积与体积学案01
    2020届二轮复习(理)专题四第1讲空间几何体的三视图、表面积与体积学案02
    2020届二轮复习(理)专题四第1讲空间几何体的三视图、表面积与体积学案03
    还剩24页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020届二轮复习(理)专题四第1讲空间几何体的三视图、表面积与体积学案

    展开
    专题四 立体几何与空间向量
    第1讲 空间几何体的三视图、表面积与体积
    「考情研析」    1.从具体内容上,主要考查:(1)空间几何体的三视图并结合几何量(线段长度、表面积、体积等)的计算等.(2)球与多面体的组合,并结合考查球的表面积和体积的计算等. 2.从高考特点上,题型为选择题或填空题,难度中等,分值约5分.
    核心知识回顾
    1.空间几何体的三视图
    (1)空间几何体三视图的画法规则
    ①长对正,即正(主)视图和俯视图的长相等;
    ②高平齐,即正(主)视图和侧(左)视图的高相等;
    ③宽相等,即侧(左)视图和俯视图的宽相等;
    ④看不见的轮廓线要用虚线表示.
    (2)空间几何体三视图的摆放规则:俯视图放在正(主)视图的下面;侧(左)视图放在正(主)视图的右面.
    2.空间几何体的表面积
    (1)多面体的表面积为各个面的面积的和.
    (2)圆柱的表面积公式:S=2πr2+2πrl=2πr(r+l)(其中,r为底面半径,l为圆柱的高).
    (3)圆锥的表面积公式:S=πr2+πrl=πr(r+l)(其中圆锥的底面半径为r,母线长为l).
    (4)圆台的表面积公式:S=π(r′2+r2+r′l+rl)(其中圆台的上、下底面半径分别为r′和r,母线长为l).
    (5)球的表面积公式:S=4πR2(其中球的半径为R).
    3.空间几何体的体积
    (1)V柱体=Sh(S为底面面积,h为高).
    (2)V锥体=Sh(S为底面面积,h为高).
    (3)V球=πR3(其中R为球的半径).

    热点考向探究
    考向1  空间几何体的三视图
    例1 (1)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的正视图、侧视图与俯视图分别为(  )

    A.②①① B.②①②
    C.②④① D.③①①
    答案 A
    解析 由已知可得正视图应当是②,排除D;侧视图是一个正方形,中间的棱在侧视图中表现为一条对角线,对角线的方向应该从左上到右下,即侧视图应当是①,排除C;俯视图应当是①,排除B.故选A.
    (2)(2019·湖南永州高三第三次模拟)正方体被切去一个角后得到的几何体如图所示,其侧视图(由左往右看)是(  )

     
    答案 A
    解析 从左往右看,是正方形从左上角有一条斜线.故选A.

    (1)根据空间几何体的三视图还原空间几何体时,要善于把空间几何体放置在长方体、正方体中,既容易得出空间几何体的实际形状,又容易进行计算.
    (2)根据空间几何体得出其三视图时,要抓住其顶点在投影面上的正投影,并注意几何体的轮廓线“眼见为实、不见为虚”,在数量关系上注意“高平齐、长对正、宽相等”的原则.

    1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图和侧视图,且该几何体的体积为,则该几何体的俯视图可以是(  )


    答案 C
    解析 若俯视图为C中的图形,则对应的几何体为如图所示的正方体(棱长为2)中的四棱锥P-ABCD,所以该四棱锥的体积V=·S正方形ABCD·PA=×(2×2)×2=,显然符合题意.经验证知其他选项不满足题意.故选C.


    2.如图甲,将一个正三棱柱ABC-DEF截去一个三棱锥A-BCD,得到几何体BCDEF,如图乙,则该几何体的正视图(主视图)是(  )

    答案 C
    解析 由于三棱柱为正三棱柱,故平面ADEB⊥平面DEF,△DEF是等边三角形,所以CD在后侧面上的投影为AB的中点与D的连线,CD的投影与底面不垂直.故选C.


    考向2  空间几何体的表面积与体积    
    例2 (1)(2019·湖南永州高三第三次模拟)某几何体的三视图如图所示,则该几何体的体积为(  )

    A. B.
    C. D.
    答案 D
    解析 由三视图可知原几何体为半个圆柱中间去掉半个圆锥,则半个圆柱体积为V1=π×12×2=π,半个圆锥体积为V2=×π×12×2=,则该几何体的体积为V=V1-V2=.故选D.
    (2)(2019·重庆南开中学高三第三次教学质量检测)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为(  )

    A.42 B.45
    C.46 D.48
    答案 C
    解析 由三视图可知原几何体为如图所示的多面体ABEHM-CDGF,所以该几何体的体积为4×3×4-××2×3×2=48-2=46.故选C.

    (3)(2019·山东省济宁市高三第一次模拟)某几何体的三视图如图所示,则该几何体的表面积为(  )

    A.24+9π B.12+9π
    C.12+5π D.24+4π
    答案 B
    解析 由三视图可知,几何体是一个高为3,底面半径为4的圆锥的,故该几何体的表面积S=×3×4+×3×4+×π×42+×π×4×=12+9π.故选B.

    (1)由三视图求表面积和体积时,解题的关键是对所给三视图进行分析,得到几何体的直观图.
    (2)多面体的表面积是各个面的面积之和,求组合体的表面积时要注意重合部分的面积.
    (3)求规则几何体的体积,只需确定底面积与相应的高,而一些不规则几何体的体积往往需采用分割或补形的方法,转化求解.

    1.(2019·马鞍山高考数学一模)如图,网格纸的各小格都是边长为1的正方形,粗实线画出的是一个几何体的三视图,则这个几何体的表面积是(  )

    A.(2+)π
    B.(2+2)π
    C.(4+)π
    D.(4+2)π
    答案 D
    解析 由三视图得到该几何体是上、下两个圆锥与中间圆柱体的组合体.其中底面圆的半径为1,圆锥的高为1,圆柱的高为2,所以组合体的表面积为S=2×π×1×+2π×1×2=2π+4π.故选D.
    2.某几何体的三视图如图所示(在如图的网格纸中,每个小正方形的边长为1),则该几何体的表面积为(  )

    A.48 B.54
    C.60 D.64
    答案 C
    解析 还原几何体如图所示,该几何体是底面为矩形的四棱锥.所以该几何体的表面积S=3×6+×6×4+×5×3×2+×6×5=18+12+15+15=60.故选C.

    3.(2019·毛坦厂中学高三4月联考)中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,27立方寸=1升,则商鞅铜方升的容积约为(  )

    A.0.456升 B.0.467升
    C.0.486升 D.0.487升
    答案 B
    解析 由三视图得,商鞅铜方升由一圆柱和一长方体组合而成(如图所示),故其体积V≈(5.4-1.6)×3×1+3×()2×1.6=12.6(立方寸),12.6÷27≈0.467(升).故选B.

    考向3  多面体与球
    例3 (1)(2019·河北省唐山市高三第二次模拟)某几何体的三视图如图所示,则该几何体的表面积为(  )

    A.16π B.14π
    C.10π D.8π
    答案 C
    解析 将三视图还原为如图所示的几何体,该几何体为半个球挖去一个圆锥,球半径为R=,圆锥底面半径r=1,由题知母线长为2,则该几何体的表面积S=×4πR2+πR2-πr2+×2πr×2=10π,故选C.

    (2)(2019·安徽省马鞍山市高考一模)在三棱锥A-BCD中,BC⊥BD,AB=AD=BD=4,BC=6,平面ABD⊥平面BCD,则三棱锥A-BCD的外接球体积为(  )
    A.36π B.
    C. D.288π
    答案 C
    解析 ∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊥BD,BC⊂平面BCD,∴BC⊥平面ABD,∵AB=AD=BD=4,所以△ABD是边长为4的等边三角形,由正弦定理得△ABD的外接圆的直径为2r==8,所以该球的直径为2R==10,则R=5.因此,三棱锥A-BCD的外接球体积为V=πR3=π×53=.故选C.

    多面体与球切、接问题的求解方法
    (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.
    (2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.
    (3)正方体的内切球的直径为正方体的棱长.
    (4)球和正方体的棱相切时,球的直径为正方体的面对角线长.
    (5)利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.

    1.(2018·襄阳五中一模)如图,在△ABC中,AB=BC=,∠ABC=90°,点D为AC的中点,将△ABD沿BD折起到△PBD的位置,使PC=PD,连接PC,得到三棱锥P-BCD,若该三棱锥的所有顶点都在同一球面上,则该球的表面积是(  )

    A.π B.3π
    C.5π D.7π
    答案 D
    解析 由题意得该三棱锥的面PCD是边长为的正三角形,且BD⊥平面PCD,设三棱锥P-BDC外接球的球心为O,△PCD外接圆的圆心为O1,则OO1⊥平面PCD,所以四边形OO1DB为直角梯形,由BD=,O1D=1,及OB=OD,得OB=,所以外接球半径为R=,所以该球的表面积S=4πR2=4π×=7π.故选D.
    2.表面积为16π的球面上有四个点P,A,B,C,且△ABC是边长为2的等边三角形,若平面PAB⊥平面ABC,则棱锥P-ABC体积的最大值为________.
    答案 3
    解析 设球半径为r,∵4πr2=16π,∴r=2.

    又∵△ABC是边长为2的等边三角形,
    ∴△ABC外接圆半径r1=2××=2,
    ∵r=r1,∴外接球的球心,即为△ABC外接圆圆心.当P在AB上投影在AB中点时,棱锥高达到最大,体积最大.设高为h,则h2=4-1=3,∴h=.
    ∴V=××(2)2×=3.

    真题押题
    『真题模拟』
    1.(2019·新疆维吾尔族自治区普通高考第二次适应性检测)某几何体的三视图如图所示,则该几何体的表面积为(  )

    A.240 B.220
    C.200 D.260
    答案 A
    解析 根据三视图可以画出该几何体的直观图为如图所示的四棱柱,侧棱与底面垂直,底面是等腰梯形,侧棱长为10,等腰梯形上底为2,下底为8,高为4,腰为5,所以表面积S=2××(2+8)×4+2×10+8×10+2×(5×10)=240.故选A.

    2.(2019·东北三省四市高三第一次模拟)我国古代数学名著《九章算术·商功》中阐述:“斜解立方,得两壍堵.斜解壍堵.其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”若称为“阳马”的某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,则对该几何体描述:
    ①四个侧面都是直角三角形;
    ②最长的侧棱长为2;
    ③四个侧面中有三个侧面是全等的直角三角形;
    ④外接球的表面积为24π.
    其中所有正确结论的编号为(  )

    A.①②③ B.②③
    C.①③④ D.①②④
    答案 D
    解析 由三视图可知,该几何体为四棱锥P-ABCD,四边形ABCD为矩形,AB=4,AD=2,PD⊥平面ABCD,PD=2,对于①,易证AB⊥平面PAD,BC⊥平面PCD,故四个侧面都是直角三角形;对于②,PB==2,故正确;对于③,四个侧面中没有全等的三角形,故错误;对于④,外接球的直径为PB=2,故外接球的表面积为24π,正确,故选D.

    3.(2019·江西八所重点中学高三4月联考)某四面体的三视图如图所示,则该四面体最长的棱长与最短的棱长的比是(  )

    A. B. C. D.
    答案 D
    解析 由三视图得该四面体的直观图如图,图中三角形ABC是等腰三角形,且三角形的中线AO是三棱锥A-BCD的高,且AO=2,底面△BCD是直角边为2的等腰直角三角形,6条棱长分别是BC=CD=2,AB=AC=,BD=2,AD=3,该四面体最长的棱长与最短的棱长分别为3,2,所以该四面体最长的棱长与最短的棱长的比是,故选D.

    4.(2019·北京高考)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为________.

    答案 40
    解析 由题意知去掉的四棱柱的底面为直角梯形,底面积S=(2+4)×2÷2=6,高为正方体的棱长4,所以去掉的四棱柱的体积为6×4=24.又正方体的体积为43=64,所以该几何体的体积为64-24=40.

    『金版押题』
    5.如图是某个几何体的三视图,则这个几何体的体积是(  )

    A.2+ B.2+
    C.4+ D.4+
    答案 A
    解析 该几何体由一个三棱柱和半个圆柱组成,其中三棱柱底面为等腰直角三角形,高为2,圆柱底面半径为1,高为1.∴V=V三棱柱+V圆柱=×××2+×π×12×1=2+.故选A.
    6.一个几何体的三视图如图所示,其中主(正)视图是边长为2的正三角形,则该几何体的外接球的体积为(  )

    A. B.
    C. D.
    答案 B
    解析 如图,该几何体的直观图是三棱锥P-ABC.主视图是边长为2的正三角形PAC,平面PAC⊥平面ABC,三棱锥的高是,其中DA=DB=DC=1,PD⊥平面ABC,球心O在PD上,设球的半径为r,则r2=(-r)2+12,解得r=,故V=.故选B.



    配套作业
    一、选择题
    1.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为(  )

    答案 C
    解析 侧视图从图形的左面向右面看,看到一个矩形,在矩形上有一条对角线,对角线是由左下角到右上角的线,故选C.
    2.如图,网格纸上小正方形的边长为1,实线画出的是某多面体的三视图,则该多面体的体积为(  )

    A.3 B.3
    C.9 D.9
    答案 A
    解析 由题中的三视图,可得该几何体是一个以俯视图中的梯形为底面的四棱锥,其底面面积S=×(2+4)×1=3,高h=3,故其体积V=Sh=3,故选A.
    3.(2019·成都市外国语学校高三一诊)某几何体的三视图如图所示,则该几何体的体积为(  )

    A.16π- B.16π-
    C.8π- D.8π-
    答案 D
    解析 由三视图可知,该几何体为一个半圆柱挖去一个倒立的四棱锥.∴该几何体的体积V=×π×22×4-×42×2=8π-.故选D.
    4.(2019·安徽马鞍山高中毕业班第二次教学质量监测)已知某几何体的三视图如图所示,网格中小正方形的边长为1,则该几何体的表面积为(  )

    A.20 B.22
    C.24 D.19+2
    答案 B

    解析 通过三视图可知,该几何体是正方体去掉两个“角”.所以表面积S=×(1+2)×2×2+×(1+2)×2×2+4+3+×××2=22.故选B.
    5.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于(  )

    A.4+(cm3) B.4+(cm3)
    C.6+(cm3) D.6+(cm3)
    答案 D
    解析 根据该几何体的三视图,可得该几何体是一个直三棱柱与一个半圆柱的组合体,该直三棱柱的底面是边长为2 cm的等腰直角三角形,高为3 cm,半圆柱的底面半圆的半径为1 cm,高为3 cm,因此该几何体的体积V=×2×2×3+×π×12×3=6+(cm3).故选D.
    6.如图所示为一个几何体的三视图,则该几何体的表面积为(  )

    A.6π B.4+4π
    C.8+6π D.4+6π
    答案 C
    解析 由三视图知该几何体是一个底面半径为1,高为4的圆柱上下部各截去一个高为2的半圆柱,如图所示,则该几何体的表面积为2π×12+2π×1×2+2×2×2=8+6π,故选C.


    7.(2019·广东东莞市高三教学质量监测)如图,半径为R的球的两个内接圆锥有公共的底面,若两个圆锥的体积之和为球的体积的,则这两个圆锥高之差的绝对值为(  )

    A. B.
    C. D.R
    答案 D
    解析 如题图,设球的球心为O,体积为V,上面圆锥的高为h,体积为V1,下面圆锥的高为H,体积为V2;圆锥的底面的圆心为O1,半径为r.由球和圆锥的对称性可知,h+H=2R,|OO1|=H-R,由题意可知,V1+V2=V⇒πr2h+πr2H=×πR3⇒r2(h+H)=R3,而h+H=2R,∴r=R,由于OO1垂直于圆锥的底面,所以OO1垂直于底面的半径,由勾股定理可知,R2=r2+|OO1|2,∴R2=r2+(H-R)2⇒H=R,可知h=R,这两个圆锥高之差的绝对值为R,故选D.
    8.一个几何体的三视图如图所示,则该几何体的体积为(  )

    A. B. C. D.
    答案 D
    解析 如图所示,三视图对应的几何体为ABCDEF,其体积为×43-××42×2=.故选D.
    9.(2019·江西南昌外国语学校高三高考适应性测试)在三棱锥S-ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S-AC-B的余弦值是-,若S,A,B,C都在同一球面上,则该球的表面积是(  )

    A.4π B.6π
    C.8π D.9π
    答案 B
    解析 如图,取AC的中点D,连接SD,BD.因为SA=SC,AB=BC,所以SD⊥AC,BD⊥AC,可得∠SDB即为二面角S-AC-B的平面角,故cos∠SDB=-,在Rt△SDC中,SD===,同理可得BD=1,由余弦定理得cos∠SDB==-,解得SB=,在△SCB中,SC2+CB2=4+2=()2=SB2,所以△SCB为直角三角形,同理可得△SAB为直角三角形,取SB的中点E,则SE=EB=,在Rt△SCB与Rt△SAB中,EA==,EC==,所以点E为该球的球心,半径为,所以该球的表面积为S=4×π×()2=6π,故选B.

    10.(2019·广州高中毕业班综合测试)一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为(  )

    A. B.7π
    C. D.8π
    答案 B
    解析 由题意可知,几何体是一个圆柱与一个的球的组合体,球的半径为1,圆柱的高为2,可得该几何体的表面积为×4π×12+2×π×12+2π×2=7π.故选B.

    11.如图,在由边长为1的小正方形组成的网格中画出了某多面体的三视图,则该多面体的外接球的表面积为(  )

    A.27π B.30π
    C.32π D.34π
    答案 D
    解析 根据三视图可知,此多面体为三棱锥A-BCD,且侧面ABC⊥底面BCD,△ABC与△BCD都为等腰三角形,如图所示.根据题意可知,三棱锥A-BCD的外接球的球心O位于过△BCD的外心O′,且垂直于底面BCD的垂线上,取BC的中点M′,连接AM′,DM′,OO′,O′B,易知O′在DM′上,过O作OM⊥AM′于点M,连接OA,OB,根据三视图可知M′D=4,BD=CD=2,故sin∠BCD=,

    设△BCD的外接圆半径为r,根据正弦定理可知,2r==5,故BO′=r=,M′O′=,设OO′=x,该多面体的外接球半径为R,在Rt△BOO′中,R2=2+x2,在Rt△AMO中,R2=2+(4-x)2,所以R=,故该多面体的外接球的表面积S=4πR2=34π.故选D.
    12.(2019·大兴区高三4月一模)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为(  )

    A. B.2
    C.3 D.2
    答案 B
    解析 由三视图得该几何体的直观图是图中的三棱锥A-BCD,所以CD=3,BD==,AB==,AC= =3,

    BC==2,
    AD==2.所以AD是最长的棱,即三棱锥最长棱的棱长为2,故选B.
    二、填空题
    13.已知一个几何体的三视图如图所示,则该几何体的外接球的表面积为________.

    答案 50π
    解析 由题意知,该几何体是三棱锥S-ABC,将其放入长方体中,情形如图所示.于是该长方体的对角线长为=5.长方体的外接球也就是该三棱锥的外接球,于是其半径为,从而外接球的表面积是50π.

    14.(2019·玉溪一中高三下学期第五次调研)如图,网格纸上小正方形的边长为1,粗实线和粗虚线画出的是某多面体的三视图,则该多面体的体积为________.

    答案 
    解析 画出三视图对应的直观图如图所示三棱锥A-BCD.故体积为××1×2×2=.





    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map