还剩15页未读,
继续阅读
所属成套资源:全国各地中考数学真题解析版
成套系列资料,整套一键下载
- 2020年湖南省永州市中考数学试卷 解析版 试卷 2 次下载
- 2020年广东省广州市中考数学试卷 解析版 试卷 5 次下载
- 2020年四川省雅安市中考数学试卷 解析版 试卷 2 次下载
- 2020年湖北省十堰市中考数学试卷 解析版 试卷 2 次下载
- 2020年江苏省南通市中考数学试卷 解析版 试卷 14 次下载
2020年山东省东营市中考数学试卷 解析版
展开
2020年山东省东营市中考数学试卷
一、选择题:本大题共10题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.(3分)﹣6的倒数是( )
A.﹣6 B.6 C. D.
2.(3分)下列运算正确的是( )
A.(x3)2=x5 B.(x﹣y)2=x2+y2
C.﹣x2y3•2xy2=﹣2x3y5 D.﹣(3x+y)=﹣3x+y
3.(3分)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( )
A.﹣2 B.2 C.±2 D.4
4.(3分)如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM等于( )
A.159° B.161° C.169° D.138°
5.(3分)如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为( )
A. B. C. D.
6.(3分)如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其对称轴与x轴交于点C,其中A、C两点的横坐标分别为﹣1和1,下列说法错误的是( )
A.abc<0
B.4a+c=0
C.16a+4b+c<0
D.当x>2时,y随x的增大而减小
7.(3分)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为( )
A.π B.2π C.2 D.1
8.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为( )
A.96里 B.48里 C.24里 D.12里
9.(3分)如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为( )
A.12 B.8 C.10 D.13
10.(3分)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:
①△APE≌△AME;
②PM+PN=AC;
③PE2+PF2=PO2;
④△POF∽△BNF;
⑤点O在M、N两点的连线上.
其中正确的是( )
A.①②③④ B.①②③⑤ C.①②③④⑤ D.③④⑤
二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.
11.(3分)2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为 .
12.(3分)因式分解:12a2﹣3b2= .
13.(3分)东营市某学校女子游泳队队员的年龄分布如下表:
年龄(岁)
13
14
15
人数
4
7
4
则该校女子游泳队队员的平均年龄是 岁.
14.(3分)已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k 0(填“>”或“<”).
15.(4分)如果关于x的一元二次方程x2﹣6x+m=0有实数根,那么m的取值范围是 .
16.(4分)如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA=3PE,PD=3PF,△PEF、△PDC、△PAB的面积分别记为S、S1、S2.若S=2,则S1+S2= .
17.(4分)如图,在Rt△AOB中,OB=2,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为 .
18.(4分)如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点An的横坐标为an,若a1=2,则a2020= .
三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.
19.(8分)(1)计算:+(2cos60°)2020﹣()﹣2﹣|3+2|;
(2)先化简,再求值:(x﹣)÷,其中x=+1,y=.
20.(8分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.
(1)求证:BC是⊙O的切线;
(2)求⊙O的直径AB的长度.
21.(8分)如图,C处是一钻井平台,位于东营港口A的北偏东60°方向上,与港口A相距60海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45°方向,则从B到达C需要多少小时?
22.(8分)东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.
作业情况
频数
频率
非常好
0.22
较好
68
一般
不好
40
请根据图表中提供的信息,解答下列问题:
(1)本次抽样共调查了多少名学生?
(2)将统计表中所缺的数据填在表中横线上;
(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?
(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.
23.(8分)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:
型号
价格(元/只)
项目
甲
乙
成本
12
4
售价
18
6
(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?
(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.
24.(10分)如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.
(1)求抛物线的解析式及点A、B的坐标;
(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.
25.(12分)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.
(1)观察猜想.
图1中,线段NM、NP的数量关系是 ,∠MNP的大小为 .
(2)探究证明
把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.
2020年山东省东营市中考数学试卷
参考答案与试题解析
一、选择题:本大题共10题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.【解答】解:﹣6的倒数是:﹣.
故选:C.
2.【解答】解:A、原式=x6,不符合题意;
B、原式=x2﹣2xy+y2,不符合题意;
C、原式=﹣2x3y5,符合题意;
D、原式=﹣3x﹣y,不符合题意.
故选:C.
3.【解答】解:表示“=”即4的算术平方根,
∴计算器面板显示的结果为2,
故选:B.
4.【解答】解:∵∠AOC与∠BOD是对顶角,
∴∠AOC=∠BOD=42°,
∴∠AOD=180°﹣42°=138°,
∵射线OM平分∠BOD,
∴∠BOM=∠DOM=21°,
∴∠AOM=138°+21°=159°.
故选:A.
5.【解答】解:随机闭合开关K1、K2、K3中的两个有三种情况:闭合K1K2,闭合K1K3,闭合K2K3,
能让两盏灯泡L1、L2同时发光的有一种情况:闭合K2K3,
则P(能让两盏灯泡L1、L2同时发光)=.
故选:D.
6.【解答】解:抛物线开口向下,因此a<0,对称轴为x=1,即﹣=1,也就是2a+b=0,b>0,抛物线与y轴交于正半轴,于是c>0,
∴abc<0,因此选项A不符合题意;
由A(﹣1,0)、C(1,0)对称轴为x=1,可得抛物线与x轴的另一个交点B(3,0),
∴a﹣b+c=0,9a+3b+c=0,3a+c=0,因此选项B符合题意;
当x=4时,y=16a+4b+c<0,因此选项C不符合题意;
当x>1时,y随x的增大而减小,因此选项D不符合题意;
故选:B.
7.【解答】解:根据圆锥侧面展开图是扇形,
扇形面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径),得
3πr=3π,
∴r=1.
所以圆锥的底面半径为1.
故选:D.
8.【解答】解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x里,x里,x里,
依题意,得:4x+2x+x+x+x+x=378,
解得:x=48.
故选:B.
9.【解答】解:根据图2中的抛物线可知:
当点P在△ABC的顶点A处,运动到点B处时,
图1中的AC=BC=13,
当点P运动到AB中点时,
此时CP⊥AB,
根据图2点Q为曲线部分的最低点,
得CP=12,
所以根据勾股定理,得
此时AP==5.
所以AB=2AP=10.
故选:C.
10.【解答】解:∵四边形ABCD是正方形
∴∠BAC=∠DAC=45°.
∵在△APE和△AME中,
,
∴△APE≌△AME,故①正确;
∴PE=EM=PM,
同理,FP=FN=NP.
∵正方形ABCD中AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=PM,FP=FN=NP,OA=AC,
∴PM+PN=AC,故②正确;
∵四边形PEOF是矩形,
∴PE=OF,
在直角△OPF中,OF2+PF2=PO2,
∴PE2+PF2=PO2,故③正确.
∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;
∵OA垂直平分线段PM.OB垂直平分线段OB,
∴OM=OP,ON=OP,
∴OM=OP=ON,
∴点O是△PMN的外接圆的圆心,
∵∠MPN=90°,
∴MN是直径,
∴M,O,N共线,故⑤正确.
故选:B.
二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.
11.【解答】解:0.00000002=2×10﹣8,
则0.00000002用科学记数法表示为2×10﹣8.
故答案为:2×10﹣8.
12.【解答】解:原式=3(4a2﹣b2)
=3(2a+b)(2a﹣b).
故答案为:3(2a+b)(2a﹣b).
13.【解答】解:该校女子游泳队队员的平均年龄是=14(岁),
故答案为:14.
14.【解答】解:设直线AB的解析式为:y=kx+b(k≠0),
把A(1,﹣1),B(﹣1,3)代入y=kx+b得,
,
解得:k=﹣2,b=1,
∴k<0,
故答案为:<.
15.【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有实数根,
∴△=36﹣4m≥0,
解得:m≤9,
则m的取值范围是m≤9.
故答案为:m≤9.
16.【解答】解:∵PA=3PE,PD=3PF,
∴==,
∴EF∥AD,
∴△PEF∽△PAD,
∴=()2,
∵S△PEF=2,
∴S△PAD=18,
∵四边形ABCD是平行四边形,
∴S△PAD=S平行四边形ABCD,
∴S1+S2=S△PAD=18,
故答案为18.
17.【解答】解:连接OP、OQ,作OP′⊥AB于P′,
∵PQ是⊙O的切线,
∴OQ⊥PQ,
∴PQ==,
当OP最小时,线段PQ的长度最小,
当OP⊥AB时,OP最小,
在Rt△AOB中,∠A=30°,
∴OA==6,
在Rt△AOP′中,∠A=30°,
∴OP′=OA=3,
∴线段PQ长度的最小值==2,
故答案为:2.
18.【解答】解:当a1=2时,B1的横坐标与A1的横坐标相等为a1=2,
A2的纵坐标和B1的纵坐标相同为y2=﹣=﹣,
B2的横坐标和A2的横坐标相同为a2═﹣,
A3的纵坐标和B2的纵坐标相同为y3=﹣=,
B3的横坐标和A3的横坐标相同为a3=﹣,
A4的纵坐标和B3的纵坐标相同为y4=﹣=3,
B4的横坐标和A4的横坐标相同为a4=2=a1,
…
由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,
∵2020÷3=673…1,
∴a2020=a1=2,
故答案为:2.
三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.
19.【解答】解:(1)原式=3+(2×)2020﹣22﹣(3+2)
=3+1﹣4﹣3﹣2
=﹣6;
(2)原式=•
=•
=x﹣y.
当x=+1,y=时,
原式=+1﹣
=1.
20.【解答】(1)证明:∵在△AME中,ME=3,AE=4,AM=5,
∴AM2=ME2+AE2,
∴△AME是直角三角形,
∴∠AEM=90°,
又∵MN∥BC,
∴∠ABC=∠AEM=90°,
∴AB⊥BC,
∵AB为直径,
∴BC是⊙O的切线;
(2)解:连接OM,如图,设⊙O的半径是r,
在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,
∵OM2=ME2+OE2,
∴r2=32+(4﹣r)2,
解得:r=,
∴AB=2r=.
21.【解答】解:过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,
由题意得:∠MAB=∠NBA=90°,∠MAC=60°,∠NBC=45°,AC=60海里,
∴∠CDA=∠CDB=90°,
∵在Rt△ACD中,∠CAD=∠MAB﹣∠MAC=90°﹣60°=30°,
∴CD=AC=30(海里),
在Rt△BCD中,∠CDB=90°,∠CBD=∠NBD﹣∠NBC=90°﹣45°=45°,
∴BC=CD=60(海里),
∴60÷50=1.2(小时),
∴从B处到达C岛处需要1.2小时.
22.【解答】解:(1)根据题意得:40÷=200(名),
则本次抽样共调查了200名学生;
(2)填表如下:
作业情况
频数
频率
非常好
44
0.22
较好
68
0.34
一般
48
0.24
不好
40
0.20
故答案为:44;48;0.34;0.24;0.20;
(3)根据题意得:1800×(0.22+0.34)=1008(名),
则该校学生作业情况“非常好”和“较好”的学生一共约1008名;
(4)列表如下:
A1
A2
B
C
A1
﹣﹣﹣
(A1,A2)
(A1,B)
(A1,C)
A2
(A2,A1)
﹣﹣﹣
(A2,B)
(A2,C)
B
(B,A1)
(B,A2)
﹣﹣﹣
(B,C)
C
(C,A1)
(C,A2)
(C,B)
﹣﹣﹣
由列表可以看出,一共有12种结果,且它们出现的可能性相等,其中两次抽到的作业本都是“非常好”的有2种,
则P(两次抽到的作业本都是“非常好”)==.
23.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,
由题意可得:,
解得:,
答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;
(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20﹣a)万只,利润为w万元,
由题意可得:12a+4(20﹣a)≤216,
∴a≤17,
∵w=(18﹣12)a+(6﹣4)(20﹣a)=4a+40是一次函数,w随a的增大而增大,
∴a=17时,w有最大利润=108(万元),
答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.
24.【解答】解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得:﹣4a=2.
解得a=﹣.
则该抛物线解析式为y=﹣x2+x+2.
由于y=﹣x2+x+2=﹣(x+1)(x﹣4).
故A(﹣1,0),B(4,0);
(2)存在,理由如下:
由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,
∴CD∥EG,
∴=.
∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).
∴CD=2﹣1=1.
∴=EG.
设BC所在直线的解析式为y=mx+n(m≠0).
将B(4,0),C(0,2)代入,得.
解得.
∴直线BC的解析式是y=﹣x+2.
设E(t,﹣t2+t+2),则G(t,﹣t+2),其中<t<4.
∴EG=(﹣t2+t+2)﹣(﹣t+2)=﹣(t﹣2)2+2.
∴=﹣(t﹣2)2+2.
∵<0,
∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).
25.【解答】解:(1)∵AB=AC,AD=AE,
∴BD=CE,
∵点M、N、P分别为DE、BE、BC的中点,
∴MN=BD,PN=CE,MN∥AB,PN∥AC,
∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,
∴∠MNE+∠ENP=∠ABE+∠AEB,
∵∠ABE+∠AEB=180°﹣∠BAE=60°,
∴∠MNP=60°,
故答案为:NM=NP;60°;
(2)△MNP是等边三角形.
理由 如下:由旋转可得,∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴BD=CE,∠ABD=∠ACE,
∵点M、N、P分别为DE、BE、BC的中点.
∴∴MN=BD,PN=CE,MN∥BD,PN∥CE,
∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,
∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,
∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,
∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,
∴△MNP是等边三角形;
(3)根据题意得,BD≤AB+AD,即BD≤4,
∴MN≤2,
∴△MNP的面积==,
∴△MNP的面积的最大值为.
一、选择题:本大题共10题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.(3分)﹣6的倒数是( )
A.﹣6 B.6 C. D.
2.(3分)下列运算正确的是( )
A.(x3)2=x5 B.(x﹣y)2=x2+y2
C.﹣x2y3•2xy2=﹣2x3y5 D.﹣(3x+y)=﹣3x+y
3.(3分)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( )
A.﹣2 B.2 C.±2 D.4
4.(3分)如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM等于( )
A.159° B.161° C.169° D.138°
5.(3分)如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为( )
A. B. C. D.
6.(3分)如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其对称轴与x轴交于点C,其中A、C两点的横坐标分别为﹣1和1,下列说法错误的是( )
A.abc<0
B.4a+c=0
C.16a+4b+c<0
D.当x>2时,y随x的增大而减小
7.(3分)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为( )
A.π B.2π C.2 D.1
8.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为( )
A.96里 B.48里 C.24里 D.12里
9.(3分)如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为( )
A.12 B.8 C.10 D.13
10.(3分)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:
①△APE≌△AME;
②PM+PN=AC;
③PE2+PF2=PO2;
④△POF∽△BNF;
⑤点O在M、N两点的连线上.
其中正确的是( )
A.①②③④ B.①②③⑤ C.①②③④⑤ D.③④⑤
二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.
11.(3分)2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为 .
12.(3分)因式分解:12a2﹣3b2= .
13.(3分)东营市某学校女子游泳队队员的年龄分布如下表:
年龄(岁)
13
14
15
人数
4
7
4
则该校女子游泳队队员的平均年龄是 岁.
14.(3分)已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k 0(填“>”或“<”).
15.(4分)如果关于x的一元二次方程x2﹣6x+m=0有实数根,那么m的取值范围是 .
16.(4分)如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA=3PE,PD=3PF,△PEF、△PDC、△PAB的面积分别记为S、S1、S2.若S=2,则S1+S2= .
17.(4分)如图,在Rt△AOB中,OB=2,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为 .
18.(4分)如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点An的横坐标为an,若a1=2,则a2020= .
三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.
19.(8分)(1)计算:+(2cos60°)2020﹣()﹣2﹣|3+2|;
(2)先化简,再求值:(x﹣)÷,其中x=+1,y=.
20.(8分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.
(1)求证:BC是⊙O的切线;
(2)求⊙O的直径AB的长度.
21.(8分)如图,C处是一钻井平台,位于东营港口A的北偏东60°方向上,与港口A相距60海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45°方向,则从B到达C需要多少小时?
22.(8分)东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.
作业情况
频数
频率
非常好
0.22
较好
68
一般
不好
40
请根据图表中提供的信息,解答下列问题:
(1)本次抽样共调查了多少名学生?
(2)将统计表中所缺的数据填在表中横线上;
(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?
(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.
23.(8分)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:
型号
价格(元/只)
项目
甲
乙
成本
12
4
售价
18
6
(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?
(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.
24.(10分)如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.
(1)求抛物线的解析式及点A、B的坐标;
(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.
25.(12分)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.
(1)观察猜想.
图1中,线段NM、NP的数量关系是 ,∠MNP的大小为 .
(2)探究证明
把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.
2020年山东省东营市中考数学试卷
参考答案与试题解析
一、选择题:本大题共10题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.【解答】解:﹣6的倒数是:﹣.
故选:C.
2.【解答】解:A、原式=x6,不符合题意;
B、原式=x2﹣2xy+y2,不符合题意;
C、原式=﹣2x3y5,符合题意;
D、原式=﹣3x﹣y,不符合题意.
故选:C.
3.【解答】解:表示“=”即4的算术平方根,
∴计算器面板显示的结果为2,
故选:B.
4.【解答】解:∵∠AOC与∠BOD是对顶角,
∴∠AOC=∠BOD=42°,
∴∠AOD=180°﹣42°=138°,
∵射线OM平分∠BOD,
∴∠BOM=∠DOM=21°,
∴∠AOM=138°+21°=159°.
故选:A.
5.【解答】解:随机闭合开关K1、K2、K3中的两个有三种情况:闭合K1K2,闭合K1K3,闭合K2K3,
能让两盏灯泡L1、L2同时发光的有一种情况:闭合K2K3,
则P(能让两盏灯泡L1、L2同时发光)=.
故选:D.
6.【解答】解:抛物线开口向下,因此a<0,对称轴为x=1,即﹣=1,也就是2a+b=0,b>0,抛物线与y轴交于正半轴,于是c>0,
∴abc<0,因此选项A不符合题意;
由A(﹣1,0)、C(1,0)对称轴为x=1,可得抛物线与x轴的另一个交点B(3,0),
∴a﹣b+c=0,9a+3b+c=0,3a+c=0,因此选项B符合题意;
当x=4时,y=16a+4b+c<0,因此选项C不符合题意;
当x>1时,y随x的增大而减小,因此选项D不符合题意;
故选:B.
7.【解答】解:根据圆锥侧面展开图是扇形,
扇形面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径),得
3πr=3π,
∴r=1.
所以圆锥的底面半径为1.
故选:D.
8.【解答】解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x里,x里,x里,
依题意,得:4x+2x+x+x+x+x=378,
解得:x=48.
故选:B.
9.【解答】解:根据图2中的抛物线可知:
当点P在△ABC的顶点A处,运动到点B处时,
图1中的AC=BC=13,
当点P运动到AB中点时,
此时CP⊥AB,
根据图2点Q为曲线部分的最低点,
得CP=12,
所以根据勾股定理,得
此时AP==5.
所以AB=2AP=10.
故选:C.
10.【解答】解:∵四边形ABCD是正方形
∴∠BAC=∠DAC=45°.
∵在△APE和△AME中,
,
∴△APE≌△AME,故①正确;
∴PE=EM=PM,
同理,FP=FN=NP.
∵正方形ABCD中AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=PM,FP=FN=NP,OA=AC,
∴PM+PN=AC,故②正确;
∵四边形PEOF是矩形,
∴PE=OF,
在直角△OPF中,OF2+PF2=PO2,
∴PE2+PF2=PO2,故③正确.
∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;
∵OA垂直平分线段PM.OB垂直平分线段OB,
∴OM=OP,ON=OP,
∴OM=OP=ON,
∴点O是△PMN的外接圆的圆心,
∵∠MPN=90°,
∴MN是直径,
∴M,O,N共线,故⑤正确.
故选:B.
二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.
11.【解答】解:0.00000002=2×10﹣8,
则0.00000002用科学记数法表示为2×10﹣8.
故答案为:2×10﹣8.
12.【解答】解:原式=3(4a2﹣b2)
=3(2a+b)(2a﹣b).
故答案为:3(2a+b)(2a﹣b).
13.【解答】解:该校女子游泳队队员的平均年龄是=14(岁),
故答案为:14.
14.【解答】解:设直线AB的解析式为:y=kx+b(k≠0),
把A(1,﹣1),B(﹣1,3)代入y=kx+b得,
,
解得:k=﹣2,b=1,
∴k<0,
故答案为:<.
15.【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有实数根,
∴△=36﹣4m≥0,
解得:m≤9,
则m的取值范围是m≤9.
故答案为:m≤9.
16.【解答】解:∵PA=3PE,PD=3PF,
∴==,
∴EF∥AD,
∴△PEF∽△PAD,
∴=()2,
∵S△PEF=2,
∴S△PAD=18,
∵四边形ABCD是平行四边形,
∴S△PAD=S平行四边形ABCD,
∴S1+S2=S△PAD=18,
故答案为18.
17.【解答】解:连接OP、OQ,作OP′⊥AB于P′,
∵PQ是⊙O的切线,
∴OQ⊥PQ,
∴PQ==,
当OP最小时,线段PQ的长度最小,
当OP⊥AB时,OP最小,
在Rt△AOB中,∠A=30°,
∴OA==6,
在Rt△AOP′中,∠A=30°,
∴OP′=OA=3,
∴线段PQ长度的最小值==2,
故答案为:2.
18.【解答】解:当a1=2时,B1的横坐标与A1的横坐标相等为a1=2,
A2的纵坐标和B1的纵坐标相同为y2=﹣=﹣,
B2的横坐标和A2的横坐标相同为a2═﹣,
A3的纵坐标和B2的纵坐标相同为y3=﹣=,
B3的横坐标和A3的横坐标相同为a3=﹣,
A4的纵坐标和B3的纵坐标相同为y4=﹣=3,
B4的横坐标和A4的横坐标相同为a4=2=a1,
…
由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,
∵2020÷3=673…1,
∴a2020=a1=2,
故答案为:2.
三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.
19.【解答】解:(1)原式=3+(2×)2020﹣22﹣(3+2)
=3+1﹣4﹣3﹣2
=﹣6;
(2)原式=•
=•
=x﹣y.
当x=+1,y=时,
原式=+1﹣
=1.
20.【解答】(1)证明:∵在△AME中,ME=3,AE=4,AM=5,
∴AM2=ME2+AE2,
∴△AME是直角三角形,
∴∠AEM=90°,
又∵MN∥BC,
∴∠ABC=∠AEM=90°,
∴AB⊥BC,
∵AB为直径,
∴BC是⊙O的切线;
(2)解:连接OM,如图,设⊙O的半径是r,
在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,
∵OM2=ME2+OE2,
∴r2=32+(4﹣r)2,
解得:r=,
∴AB=2r=.
21.【解答】解:过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,
由题意得:∠MAB=∠NBA=90°,∠MAC=60°,∠NBC=45°,AC=60海里,
∴∠CDA=∠CDB=90°,
∵在Rt△ACD中,∠CAD=∠MAB﹣∠MAC=90°﹣60°=30°,
∴CD=AC=30(海里),
在Rt△BCD中,∠CDB=90°,∠CBD=∠NBD﹣∠NBC=90°﹣45°=45°,
∴BC=CD=60(海里),
∴60÷50=1.2(小时),
∴从B处到达C岛处需要1.2小时.
22.【解答】解:(1)根据题意得:40÷=200(名),
则本次抽样共调查了200名学生;
(2)填表如下:
作业情况
频数
频率
非常好
44
0.22
较好
68
0.34
一般
48
0.24
不好
40
0.20
故答案为:44;48;0.34;0.24;0.20;
(3)根据题意得:1800×(0.22+0.34)=1008(名),
则该校学生作业情况“非常好”和“较好”的学生一共约1008名;
(4)列表如下:
A1
A2
B
C
A1
﹣﹣﹣
(A1,A2)
(A1,B)
(A1,C)
A2
(A2,A1)
﹣﹣﹣
(A2,B)
(A2,C)
B
(B,A1)
(B,A2)
﹣﹣﹣
(B,C)
C
(C,A1)
(C,A2)
(C,B)
﹣﹣﹣
由列表可以看出,一共有12种结果,且它们出现的可能性相等,其中两次抽到的作业本都是“非常好”的有2种,
则P(两次抽到的作业本都是“非常好”)==.
23.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,
由题意可得:,
解得:,
答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;
(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20﹣a)万只,利润为w万元,
由题意可得:12a+4(20﹣a)≤216,
∴a≤17,
∵w=(18﹣12)a+(6﹣4)(20﹣a)=4a+40是一次函数,w随a的增大而增大,
∴a=17时,w有最大利润=108(万元),
答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.
24.【解答】解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得:﹣4a=2.
解得a=﹣.
则该抛物线解析式为y=﹣x2+x+2.
由于y=﹣x2+x+2=﹣(x+1)(x﹣4).
故A(﹣1,0),B(4,0);
(2)存在,理由如下:
由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,
∴CD∥EG,
∴=.
∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).
∴CD=2﹣1=1.
∴=EG.
设BC所在直线的解析式为y=mx+n(m≠0).
将B(4,0),C(0,2)代入,得.
解得.
∴直线BC的解析式是y=﹣x+2.
设E(t,﹣t2+t+2),则G(t,﹣t+2),其中<t<4.
∴EG=(﹣t2+t+2)﹣(﹣t+2)=﹣(t﹣2)2+2.
∴=﹣(t﹣2)2+2.
∵<0,
∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).
25.【解答】解:(1)∵AB=AC,AD=AE,
∴BD=CE,
∵点M、N、P分别为DE、BE、BC的中点,
∴MN=BD,PN=CE,MN∥AB,PN∥AC,
∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,
∴∠MNE+∠ENP=∠ABE+∠AEB,
∵∠ABE+∠AEB=180°﹣∠BAE=60°,
∴∠MNP=60°,
故答案为:NM=NP;60°;
(2)△MNP是等边三角形.
理由 如下:由旋转可得,∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴BD=CE,∠ABD=∠ACE,
∵点M、N、P分别为DE、BE、BC的中点.
∴∴MN=BD,PN=CE,MN∥BD,PN∥CE,
∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,
∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,
∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,
∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,
∴△MNP是等边三角形;
(3)根据题意得,BD≤AB+AD,即BD≤4,
∴MN≤2,
∴△MNP的面积==,
∴△MNP的面积的最大值为.