2020届陕西省宝鸡市高考模拟检测(二)数学(理)试题(解析版)
展开2020届陕西省宝鸡市高考模拟检测(二)数学(理)试题
一、单选题
1.复数在复平面内对应的点为则( )
A. B. C. D.
【答案】B
【解析】求得复数,结合复数除法运算,求得的值.
【详解】
易知,则.
故选:B
【点睛】
本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.
2.设全集U=R,集合,则( )
A.{x|-1 <x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}
【答案】C
【解析】解一元二次不等式求得集合,由此求得
【详解】
由,解得或.
因为或,所以.
故选:C
【点睛】
本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.
3.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
A.23 B.21 C.35 D.32
【答案】B
【解析】根据随机数表法的抽样方法,确定选出来的第5个个体的编号.
【详解】
随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在编号01,02,…,39,40内的有:16,26,16,24,23,21,…依次不重复的第5个编号为21.
故选:B
【点睛】
本小题主要考查随机数表法进行抽样,属于基础题.
4.已知α,β是两平面,l,m,n是三条不同的直线,则不正确命题是( )
A.若m⊥α,n//α,则m⊥n B.若m//α,n//α,则m//n
C.若l⊥α,l//β,则α⊥β D.若α//β,lβ,且l//α,则l//β
【答案】B
【解析】根据线面平行、线面垂直和空间角的知识,判断A选项的正确性.由线面平行有关知识判断B选项的正确性.根据面面垂直的判定定理,判断C选项的正确性.根据面面平行的性质判断D选项的正确性.
【详解】
A.若,则在中存在一条直线,使得,则,又,那么,故正确;
B.若,则或相交或异面,故不正确;
C.若,则存在,使,又,则,故正确.
D.若,且,则或,又由,故正确.
故选:B
【点睛】
本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.
5.函数的图象为C,以下结论中正确的是( )
①图象C关于直线对称;
②图象C关于点对称;
③由y =2sin2x的图象向右平移个单位长度可以得到图象C.
A.① B.①② C.②③ D.①②③
【答案】B
【解析】根据三角函数的对称轴、对称中心和图象变换的知识,判断出正确的结论.
【详解】
因为,
又,所以①正确.
,所以②正确.
将的图象向右平移个单位长度,得,所以③错误.
所以①②正确,③错误.
故选:B
【点睛】
本小题主要考查三角函数的对称轴、对称中心,考查三角函数图象变换,属于基础题.
6.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则( )
A. B.
C. D.
【答案】D
【解析】利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.
【详解】
是偶函数,,
而,因为在上递减,
,
即.
故选:D
【点睛】
本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.
7.执行如下的程序框图,则输出的是( )
A. B.
C. D.
【答案】A
【解析】列出每一步算法循环,可得出输出结果的值.
【详解】
满足,执行第一次循环,,;
成立,执行第二次循环,,;
成立,执行第三次循环,,;
成立,执行第四次循环,,;
成立,执行第五次循环,,;
成立,执行第六次循环,,;
成立,执行第七次循环,,;
成立,执行第八次循环,,;
不成立,跳出循环体,输出的值为,故选:A.
【点睛】
本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.
8.已知双曲线C的两条渐近线的夹角为60°,则双曲线C的方程不可能为( )
A. B. C. D.
【答案】C
【解析】判断出已知条件中双曲线的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项.
【详解】
两条渐近线的夹角转化为双曲渐近线与轴的夹角时要分为两种情况.依题意,双曲渐近线与轴的夹角为30°或60°,双曲线的渐近线方程为或.A选项渐近线为,B选项渐近线为,C选项渐近线为,D选项渐近线为.所以双曲线的方程不可能为.
故选:C
【点睛】
本小题主要考查双曲线的渐近线方程,属于基础题.
9.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是( )
(结果采取“只入不舍”的原则取整数,相关数据:,)
A. B. C. D.
【答案】C
【解析】由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出.
【详解】
由题意可得莞草与蒲草第n天的长度分别为
据题意得:, 解得2n=12,
∴n24.
故选:C.
【点睛】
本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
10.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )
A.4π B.8π C. D.
【答案】B
【解析】由三视图判断出原图,将几何体补形为长方体,由此计算出几何体外接球的直径,进而求得球的表面积.
【详解】
根据题意和三视图知几何体是一个底面为直角三角形的直三棱柱,底面直角三角形的斜边为2,侧棱长为2且与底面垂直,因为直三棱柱可以复原成一个长方体,该长方体外接球就是该三棱柱的外接球,长方体对角线就是外接球直径,则,那么.
故选:B
【点睛】
本小题主要考查三视图还原原图,考查几何体外接球的有关计算,属于基础题.
11.已知直线y=k(x+1)(k>0)与抛物线C相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则|FA| =( )
A.1 B.2 C.3 D.4
【答案】C
【解析】方法一:设,利用抛物线的定义判断出是的中点,结合等腰三角形的性质求得点的横坐标,根据抛物线的定义求得,进而求得.
方法二:设出两点的横坐标,由抛物线的定义,结合求得的关系式,联立直线的方程和抛物线方程,写出韦达定理,由此求得,进而求得.
【详解】
方法一:由题意得抛物线的准线方程为,直线恒过定点,过分别作于,于,连接,由,则,所以点为的中点,又点是的中点,
则,所以,又
所以由等腰三角形三线合一得点的横坐标为,
所以,所以.
方法二:抛物线的准线方程为,直线
由题意设两点横坐标分别为,
则由抛物线定义得
又 ①
②
由①②得.
故选:C
【点睛】
本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.
12.已知函数,若则( )
A.f(a)<f(b) <f(c) B.f(b) <f(c) <f(a)
C.f(a) <f(c) <f(b) D.f(c) <f(b) <f(a)
【答案】C
【解析】利用导数求得在上递增,结合与图象,判断出的大小关系,由此比较出的大小关系.
【详解】
因为,所以在上单调递增;
在同一坐标系中作与图象,
,可得,故.
故选:C
【点睛】
本小题主要考查利用导数研究函数的单调性,考查利用函数的单调性比较大小,考查数形结合的数学思想方法,属于中档题.
二、填空题
13.若的展开式中各项系数之和为32,则展开式中x的系数为_____
【答案】2025
【解析】利用赋值法,结合展开式中各项系数之和列方程,由此求得的值.再利用二项式展开式的通项公式,求得展开式中的系数.
【详解】
依题意,令,解得,所以,则二项式的展开式的通项为:
令,得,所以的系数为.
故答案为:2025
【点睛】
本小题主要考查二项式展开式各项系数之和,考查二项式展开式指定项系数的求法,属于基础题.
14.函数在区间(-∞,1)上递增,则实数a的取值范围是____
【答案】
【解析】根据复合函数单调性同增异减,结合二次函数的性质、对数型函数的定义域列不等式组,解不等式求得的取值范围.
【详解】
由二次函数的性质和复合函数的单调性可得
解得.
故答案为:
【点睛】
本小题主要考查根据对数型复合函数的单调性求参数的取值范围,属于基础题.
15.点P是△ABC所在平面内一点且在△ABC内任取一点,则此点取自△PBC内的概率是____
【答案】
【解析】设是中点,根据已知条件判断出三点共线且是线段靠近的三等分点,由此求得,结合几何概型求得点取自三角形的概率.
【详解】
设是中点,因为,所以,所以三点共线且点是线段靠近的三等分点,
故,所以此点取自内的概率是.
故答案为:
【点睛】
本小题主要考查三点共线的向量表示,考查几何概型概率计算,属于基础题.
16.数列满足,则,_____.若存在n∈N使得成立,则实数λ的最小值为______
【答案】
【解析】利用“退一作差法”求得数列的通项公式,将不等式分离常数,利用商比较法求得的最小值,由此求得的取值范围,进而求得的最小值.
【详解】
当时
两式相减得
所以
当时,满足上式
综上所述
存在使得成立的充要条件为存在使得,
设,所以,即,
所以单调递增,的最小项,即有的最小值为.
故答案为:(1). (2).
【点睛】
本小题主要考查根据递推关系式求数列的通项公式,考查数列单调性的判断方法,考查不等式成立的存在性问题的求解策略,属于中档题.
三、解答题
17.已知函数
(1)求f(x)的单调递增区间;
(2)△ABC内角A、B、C的对边分别为a、b、c,若且A为锐角,a=3,sinC=2sinB,求△ABC的面积.
【答案】(1)(2)
【解析】(1)利用降次公式、辅助角公式化简解析式,根据三角函数单调区间的求法,求得的单调递增区间.
(2)先由求得,利用正弦定理得到,结合余弦定理列方程,求得,由此求得三角形的面积.
【详解】
(1)函数,
,
由,
得.
所以的单调递增区间为 .
(2)因为且为锐角,所以.
由及正弦定理可得,又,
由余弦定理可得,
解得, .
【点睛】
本小题主要考查三角恒等变换,考查三角函数单调区间的求法,考查正弦定理、余弦定理解三角形,考查三角形的面积公式,属于中档题.
18.某调查机构为了了解某产品年产量x(吨)对价格y(千克/吨)和利润z的影响,对近五年该产品的年产量和价格统计如下表:
x | 1 | 2 | 3 | 4 | 5 |
y | 17.0 | 16.5 | 15.5 | 13.8 | 12.2 |
(1)求y关于x的线性回归方程;
(2)若每吨该产品的成本为12千元,假设该产品可全部卖出,预测当年产量为多少时,年利润w取到最大值?
参考公式:
【答案】(1)(2)当时,年利润最大.
【解析】(1)方法一:令,先求得关于的回归直线方程,由此求得关于的回归直线方程.方法二:根据回归直线方程计算公式,计算出回归直线方程.方法一的好处在计算的数值较小.
(2)求得w的表达式,根据二次函数的性质作出预测.
【详解】
(1)方法一:取,则得与的数据关系如下
1 | 2 | 3 | 4 | 5 | |
7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
,
,
,
.
,
,
关于的线性回归方程是即,
故关于的线性回归方程是.
方法二:因为,
,
,
,
,
所以,
故关于的线性回归方程是,
(2)年利润,根据二次函数的性质可知:当时,年利润最大.
【点睛】
本小题主要考查回归直线方程的求法,考查利用回归直线方程进行预测,考查运算求解能力,属于中档题.
19.在如图所示的几何体中,面CDEF为正方形,平面ABCD为等腰梯形,AB//CD,AB =2BC,点Q为AE的中点.
(1)求证:AC//平面DQF;
(2)若∠ABC=60°,AC⊥FB,求BC与平面DQF所成角的正弦值.
【答案】(1)见解析(2)
【解析】(1)连接交于点,连接,通过证明,证得平面.
(2)建立空间直角坐标系,利用直线的方向向量和平面的法向量,计算出线面角的正弦值.
【详解】
(1)证明:连接交于点,连接,因为四边形为正方形,所以点为的中点,又因为为的中点,所以;
平面平面,
平面.
(2)解:,设,则,在中,,由余弦定理得:,
.
又,平面..
平面.
如图建立的空间直角坐标系.
在等腰梯形中,可得.
则.
那么
设平面的法向量为,
则有,即,取,得.
设与平面所成的角为,则.
所以与平面所成角的正弦值为.
【点睛】
本小题主要考查线面平行的证明,考查线面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.
20.已知椭圆C的离心率为且经过点
(1)求椭圆C的方程;
(2)过点(0,2)的直线l与椭圆C交于不同两点A、B,以OA、OB为邻边的平行四边形OAMB的顶点M在椭圆C上,求直线l的方程.
【答案】(1)(2)
【解析】(1)根据椭圆的离心率、椭圆上点的坐标以及列方程,由此求得,进而求得椭圆的方程.
(2)设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理.根据平行四边形的性质以及向量加法的几何意义得到,由此求得点的坐标,将的坐标代入椭圆方程,化简后可求得直线的斜率,由此求得直线的方程.
【详解】
(1)由椭圆的离心率为,点在椭圆上,所以,且
解得,所以椭圆的方程为.
(2)显然直线的斜率存在,设直线的斜率为,则直线的方程为,设,由消去得,
所以,
由已知得,所以,由于点都在椭圆上,
所以,
展开有,
又,
所以,
经检验满足,
故直线的方程为.
【点睛】
本小题主要考查根据椭圆的离心率和椭圆上一点的坐标求椭圆方程,考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.
21.已知函数.
(1)讨论函数f(x)的极值点的个数;
(2)若f(x)有两个极值点证明.
【答案】(1)见解析(2)见解析
【解析】(1)求得函数的定义域和导函数,对分成三种情况进行分类讨论,判断出的极值点个数.
(2)由(1)知,结合韦达定理求得的关系式,由此化简的表达式为,通过构造函数法,结合导数证得,由此证得成立.
【详解】
(1)函数的定义域为
得,
(i)当时;,
因为时,时,,
所以是函数的一个极小值点;
(ii)若时,
若,即时,,
在是减函数,无极值点.
若,即时,
有两根,
不妨设
当和时,,
当时,,
是函数的两个极值点,
综上所述时,仅有一个极值点;
时,无极值点;时,有两个极值点.
(2)由(1)知,当且仅当时,有极小值点和极大值点,且是方程的两根,
,则
所以
设,则,又,即,
所以
所以是上的单调减函数,
有两个极值点,则
【点睛】
本小题主要考查利用导数研究函数的极值点,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.
22.在直角坐标系x0y中,把曲线α为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程
(1)写出的普通方程和的直角坐标方程;
(2)设点M在上,点N在上,求|MN|的最小值以及此时M的直角坐标.
【答案】(1)的普通方程为,的直角坐标方程为. (2)最小值为,此时
【解析】(1)由的参数方程消去求得的普通方程,利用极坐标和直角坐标转化公式,求得的直角坐标方程.
(2)设出点的坐标,利用点到直线的距离公式求得最小值的表达式,结合三角函数的指数求得的最小值以及此时点的坐标.
【详解】
(1)由题意知的参数方程为(为参数)
所以的普通方程为.由得,所以的直角坐标方程为.
(2)由题意,可设点的直角坐标为,
因为是直线,所以的最小值即为到的距离,
因为.
当且仅当时,取得最小值为,此时的直角坐标为即.
【点睛】
本小题主要考查参数方程化为普通方程,考查极坐标方程化为直角坐标方程,考查利用曲线参数方程求解点到直线距离的最小值问题,属于中档题.
23.已知f(x)=|x +3|-|x-2|
(1)求函数f(x)的最大值m;
(2)正数a,b,c满足a +2b +3c=m,求证:
【答案】(1)(2)见解析
【解析】(1)利用绝对值三角不等式求得的最大值.
(2)由(1)得.方法一,利用柯西不等式证得不等式成立;方法二,利用“的代换”的方法,结合基本不等式证得不等式成立.
【详解】
(1)由绝对值不等式性质得
当且仅当即时等号成立,所以
(2)由(1)得.
法1:由柯西不等式得
当且仅当时等号成立,
即,所以 .
法2:由得,
,
当且仅当时“=”成立.
【点睛】
本小题主要考查绝对值三角不等式,考查利用柯西不等式、基本不等式证明不等式,属于中档题.