2024年江苏省苏州市中考数学模拟试卷(解析版)
展开
这是一份2024年江苏省苏州市中考数学模拟试卷(解析版),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1. 下列实数中,比3大的数是( )
A. 5B. 1C. 0D. -2
【答案】A
【解析】
【分析】根据有理数的大小比较法则比较即可.
【详解】解:因为-2<0<1<3<5,
所以比3大的数是5,
故选:A.
【点睛】本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键.
2. 2024年1月17日,国务院新闻办公室公布:截至2021年末全国人口总数为141260万,比上年末增加48万人,中国人口的增长逐渐缓慢.141260用科学记数法可表示为( )
A. B. C. D.
【答案】C
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】解:141260=,
故选:C.
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3. 下列运算正确的是( )
A. B. C. D.
【答案】B
【解析】
【分析】通过,判断A选项不正确;C选项中、不是同类项,不能合并;D选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B选项正确.
【详解】A. ,故A不正确;
B. ,故B正确;
C. ,故C不正确;
D. ,故D不正确;
故选B.
【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.
4. 为迎接党的二十大胜利召开,某校开展了“学党史,悟初心”系列活动.学校对学生参加各项活动的人数进行了调查,并将数据绘制成如下统计图.若参加“书法”的人数为80人,则参加“大合唱”的人数为( )
A. 60人B. 100人C. 160人D. 400人
【答案】C
【解析】
【分析】根据参加“书法”的人数为80人,占比为,可得总人数,根据总人数乘以即可求解.
【详解】解:总人数为.
则参加“大合唱”的人数为人.
故选C.
【点睛】本题考查了扇形统计图,从统计图获取信息是解题的关键.
5. 如图,直线AB与CD相交于点O,,,则的度数是( )
A. 25°B. 30°C. 40°D. 50°
【答案】D
【解析】
【分析】根据对顶角相等可得,之后根据,即可求出.
【详解】解:由题可知,
,
.
故选:D.
【点睛】本题主要考查对顶角和角的和与差,掌握对顶角相等是解决问题的关键.
6. 如图,在的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是( )
A. B. C. D.
【答案】A
【解析】
【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.
【详解】解:由图可知,总面积为:5×6=30,,
∴阴影部分面积为:,
∴飞镖击中扇形OAB(阴影部分)的概率是,
故选:A.
【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件发生的概率.
7. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x步才能追上,根据题意可列出的方程是( )
A. B. C. D.
【答案】B
【解析】
【分析】根据题意,先令在相同时间内走路快的人走100步,走路慢的人只走60步,从而得到走路快的人的速度,走路慢的人的速度,再根据题意设未知数,列方程即可
【详解】解:令在相同时间内走路快的人走100步,走路慢的人只走60步,从而得到走路快的人的速度,走路慢的人的速度,
设走路快的人要走x步才能追上,根据题意可得,
根据题意可列出的方程是,
故选:B.
【点睛】本题考查应用一元一次方程解决数学史问题,读懂题意,找准等量关系列方程是解决问题的关键.
8. 如图,点A的坐标为,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为,则m的值为( )
A. B. C. D.
【答案】C
【解析】
【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得,可得,,从而,即可解得.
【详解】解:过C作CD⊥x轴于D,CE⊥y轴于E,如图所示:
∵CD⊥x轴,CE⊥y轴,
∴∠CDO=∠CEO=∠DOE=90°,
∴四边形EODC是矩形,
∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,
∴AB=AC,∠BAC=60°,
∴△ABC是等边三角形,
∴AB=AC=BC,
∵A(0,2),C(m,3),
∴CE=m=OD,CD=3,OA=2,
∴AE=OE−OA=CD−OA=1,
∴,
在Rt△BCD中,,
在Rt△AOB中,,
∵OB+BD=OD=m,
∴,
化简变形得:3m4−22m2−25=0,
解得:或(舍去),
∴,故C正确.
故选:C.
【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.
二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.
9. 计算: _______.
【答案】a4
【解析】
【分析】本题须根据同底数幂乘法,底数不变指数相加,即可求出答案.
【详解】解:a3•a,
=a3+1,
=a4.
故答案为:a4.
【点睛】本题主要考查了同底数幂的乘法,在解题时要能灵活应用同底数幂的乘法法则,熟练掌握运算性质是解题的关键.
10. 已知,,则______.
【答案】24
【解析】
【分析】根据平方差公式计算即可.
【详解】解:∵,,
∴,
故答案:24.
【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键.
11. 化简的结果是______.
【答案】x
【解析】
【分析】根据分式的减法进行计算即可求解.
【详解】解:原式=.
故答案为:.
【点睛】本题考查了分式的减法,正确的计算是解题的关键.
12. 定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为______.
【答案】6
【解析】
【分析】分类讨论:AB=AC=2BC或BC=2AB=2AC,然后根据三角形三边关系即可得出结果.
【详解】解:∵△ABC是等腰三角形,底边BC=3
∴AB=AC
当AB=AC=2BC时,△ABC是“倍长三角形”;
当BC=2AB=2AC时,AB+AC=BC,根据三角形三边关系,此时A、B、C不构成三角形,不符合题意;
所以当等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为6.
故答案为6.
【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用分类讨论思想是解题的关键.
13. 如图,AB是的直径,弦CD交AB于点E,连接AC,AD.若,则______°
【答案】62
【解析】
【分析】连接,根据直径所对圆周角是90°,可得,由,可得,进而可得.
【详解】解:连接,
∵AB是的直径,
∴,
,
,
故答案为:62
【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.
14. 如图,在平行四边形ABCD中,,,,分别以A,C为圆心,大于的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF,则四边形AECF的周长为______.
【答案】10
【解析】
【分析】根据作图可得,且平分,设与的交点为,证明四边形为菱形,根据平行线分线段成比例可得为的中线,然后勾股定理求得,根据直角三角形中斜边上的中线等于斜边的一半可得的长,进而根据菱形的性质即可求解.
【详解】解:如图,设与的交点为,
根据作图可得,且平分,
,
四边形是平行四边形,
,
,
又, ,
,
,
,
四边形是平行四边形,
垂直平分,
,
四边形是菱形,
,,
,
,
为的中点,
中, ,,
,
,
四边形AECF的周长为.
故答案为:.
【点睛】本题考查了垂直平分线的性质,菱形的性质与判定,勾股定理,平行线分线段成比例,平行四边形的性质与判定,综合运用以上知识是解题的关键.
15. 一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为______.
【答案】
【解析】
【分析】根据函数图像,结合题意分析分别求得进水速度和出水速度,即可求解.
【详解】解:依题意,3分钟进水30升,则进水速度为升/分钟,
3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完直至容器中的水全部排完,
则排水速度为升/分钟,
,
解得.
故答案为:.
【点睛】本题考查了函数图象问题,从函数图象获取信息是解题的关键.
16. 如图,在矩形ABCD中.动点M从点A出发,沿边AD向点D匀速运动,动点N从点B出发,沿边BC向点C匀速运动,连接MN.动点M,N同时出发,点M运动的速度为,点N运动的速度为,且.当点N到达点C时,M,N两点同时停止运动.在运动过程中,将四边形MABN沿MN翻折,得到四边形.若在某一时刻,点B的对应点恰好在CD的中点重合,则的值为______.
【答案】
【解析】
【分析】在矩形ABCD中,设,运动时间为,得到,利用翻折及中点性质,在中利用勾股定理得到,然后利用得到,在根据判定的得到,从而代值求解即可.
【详解】解:如图所示:
在矩形ABCD中,设,运动时间,
,
在运动过程中,将四边形MABN沿MN翻折,得到四边形,
,
若在某一时刻,点B的对应点恰好在CD的中点重合,
,
在中,,则,
,
,
,
,
,
,
,
,则,
,即,
在和中,
,
,即,
,
故答案为:.
【点睛】本题属于矩形背景下的动点问题,涉及到矩形的性质、对称性质、中点性质、两个三角形相似的判定与性质、勾股定理及两个三角形全等的判定与性质等知识点,熟练掌握相关性质及判定,求出相应线段长是解决问题的关键.
三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.
17. 计算:.
【答案】6
【解析】
分析】先化简各式,然后再进行计算即可;
【详解】解:原式
【点睛】本题考查了零指数幂、绝对值、平方,准确化简式子是解题的关键.
18. 解方程:.
【答案】
【解析】
【分析】根据解分式方程的步骤求出解,再检验即可.
【详解】方程两边同乘以,得.
解方程,得.
经检验,是原方程的解.
【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.即去分母,去括号,移项,合并同类项,系数化为1,检验.
19. 已知,求的值.
【答案】,3
【解析】
【分析】先将代数式化简,根据可得,整体代入即可求解.
【详解】原式
.
∵,
∴.
∴原式
.
【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入是解题的关键.
20. 一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,这个球是白球的概率为______;
(2)搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,求2次摸到的球恰好是1个白球和1个红球的概率.(请用画树状图或列表等方法说明理由)
【答案】(1)
(2)2次摸到的球恰好是1个白球和1个红球的概率为
【解析】
【分析】(1)直接利用概率公式求解即可求得答案;
(2)画树状图表示所有等可能出现的情况,从中找出两个球颜色不同的结果数,进而求出概率.
【小问1详解】
解:∵一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,
∴搅匀后从中任意摸出1个球,则摸出白球的概率为: .
故答案为:;
【小问2详解】
解: 画树状图,如图所示:
共有16种不同的结果数,其中两个球颜色不同的有6种,
∴2次摸到的球恰好是1个白球和1个红球的概率为.
【点睛】考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.
21. 如图,将矩形ABCD沿对角线AC折叠,点B的对应点为E,AE与CD交于点F.
(1)求证:;
(2)若,求的度数.
【答案】(1)见解析 (2)
【解析】
【分析】(1)由矩形与折叠的性质可得,,从而可得结论;
(2)先证明,再求解, 结合对折的性质可得答案.
【小问1详解】
证明:将矩形ABCD沿对角线AC折叠,
则,.
在△DAF和△ECF中,
∴.
【小问2详解】
解:∵,
∴.
∵四边形ABCD是矩形,
∴.
∴,
∵,
∴.
【点睛】本题考查的是全等三角形的判定与性质,轴对称的性质,矩形的性质,熟练的运用轴对称的性质证明边与角的相等是解本题的关键.
22. 某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如下表格:
(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m,培训后测试成绩的中位数是n,则m______n;(填“>”、“<”或“=”)
(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?
(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?
【答案】(1)< (2)测试成绩为“6分”的百分比比培训前减少了25%
(3)测试成绩为“10分”的学生增加了220人
【解析】
【分析】(1)先分别求解培训前与培训后的中位数,从而可得答案;
(2)分别求解培训前与培训后得6分的人数所占的百分比,再作差即可;
(3)分别计算培训前与培训后得满分的人数,再作差即可.
【小问1详解】
解:由频数分布表可得:培训前的中位数为:
培训后的中位数为:
所以
故答案为:;
小问2详解】
答:测试成绩为“6分”的百分比比培训前减少了25%.
【小问3详解】
培训前:,培训后:,
.
答:测试成绩为“10分”的学生增加了220人.
【点睛】本题考查的是频数分布表,中位数的含义,利用样本估计总体,理解题意,从频数分布表中获取信息是解本题的关键.
23. 如图,一次函数的图像与反比例函数的图像交于点,与y轴交于点B,与x轴交于点.
(1)求k与m的值;
(2)为x轴上的一动点,当△APB的面积为时,求a的值.
【答案】(1)k的值为,的值为6
(2)或
【解析】
【分析】(1)把代入,先求解k的值,再求解A的坐标,再代入反比例函数的解析式可得答案;
(2)先求解.由为x轴上的一动点,可得.由,建立方程求解即可.
【小问1详解】
解:把代入,
得.
∴.
把代入,
得.
∴.
把代入,
得.
∴k的值为,的值为6.
【小问2详解】
当时,.
∴.
∵为x轴上的一动点,
∴.
∴,
.
∵,
∴.
∴或.
【点睛】本题考查的是利用待定系数法求解反比例函数与一次函数的解析式,坐标与图形面积,利用数形结合的思想,建立方程都是解本题的关键.
24. 如图,AB是的直径,AC是弦,D是的中点,CD与AB交于点E.F是AB延长线上的一点,且.
(1)求证:为的切线;
(2)连接BD,取BD的中点G,连接AG.若,,求AG的长.
【答案】(1)见解析 (2)
【解析】
【分析】(1)方法一:如图1,连接OC,OD.由,,可得,由是的直径,D是的中点,,进而可得,即可证明CF为的切线;
方法二:如图2,连接OC,BC.设.同方法一证明,即可证明CF为的切线;
(2)方法一:如图3,过G作,垂足为H.设的半径为r,则.在Rt△OCF中,勾股定理求得,证明,得出,根据,求得,进而求得,根据勾股定理即可求得;
方法二:如图4,连接AD.由方法一,得.,D是的中点,可得,根据勾股定理即可求得.
【小问1详解】
(1)方法一:如图1,连接OC,OD.
∵,
∴.
∵,
∴.
∵,
∴.
∵是的直径,D是的中点,
∴.
∴.
∴,即.
∴.
∴CF为的切线.
方法二:如图2,连接OC,BC.设.
∵AB是的直径,D是的中点,
∴.
∴.
∵,
∴.
∴.
∵,
∴.
∴.
∵AB是的直径,
∴.
∴.
∴,即.
∴.
∴CF为的切线.
【小问2详解】
解:方法一:如图3,过G作,垂足为H.
设的半径为r,则.
在Rt△OCF中,,
解之得.
∵,
∴.
∵,
∴.
∴.
∴.
∵G为BD中点,
∴.
∴,.
∴.
∴.
方法二:如图4,连接AD.由方法一,得.
∵AB是的直径,
∴.
∵,D是的中点,
∴.
∵G为BD中点,
∴.
∴.
【点睛】本题考查了切线的判定,勾股定理,相似三角形的性质与判定,综合运用以上知识是解题的关键.
25. 某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:
(1)求甲、乙两种水果的进价;
(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.
【答案】(1)甲种水果的进价为每千克12元,乙种水果的进价为每千克20元
(2)正整数m的最大值为22
【解析】
【分析】(1)设甲种水果的进价为每千克a元,乙种水果的进价为每千克b元,根据总费用列方程组即可;
(2)设水果店第三次购进x千克甲种水果,根据题意先求出x的取值范围,再表示出总利润w与x的关系式,根据一次函数的性质判断即可.
【小问1详解】
设甲种水果的进价为每千克a元,乙种水果的进价为每千克b元.
根据题意,得
解方程组,得
答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元.
【小问2详解】
设水果店第三次购进x千克甲种水果,则购进千克乙种水果,
根据题意,得.
解这个不等式,得.
设获得的利润为w元,
根据题意,得
.
∵,
∴w随x的增大而减小.
∴当时,w的最大值为.
根据题意,得.
解这个不等式,得.
∴正整数m的最大值为22.
【点睛】本题考查一次函数的应用、二元一次方程组的应用、解一元一次不等式,解答本题的关键是明确题意,找出等量关系,列出相应的二元一次方程,写出相应的函数解析式,利用一次函数的性质求最值.
26. 如图,在二次函数(m是常数,且)的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC,BD.
(1)求A,B,C三点的坐标(用数字或含m的式子表示),并求的度数;
(2)若,求m的值;
(3)若在第四象限内二次函数(m是常数,且)的图像上,始终存在一点P,使得,请结合函数的图像,直接写出m的取值范围.
【答案】(1)A(-1,0);B(2m+1,0);C(0,2m+1);
(2)
(3)
【解析】
【分析】(1)分别令等于0,即可求得的坐标,根据,即可求得;
(2)方法一:如图1,连接AE.由解析式分别求得,,.根据轴对称的性质,可得,由,建立方程,解方程即可求解.方法二:如图2,过点D作交BC于点H.由方法一,得,.证明,根据相似三角形的性质建立方程,解方程即可求解;
(3)设PC与x轴交于点Q,当P在第四象限时,点Q总在点B的左侧,此时,即.
【小问1详解】
当时,.
解方程,得,.
∵点A在点B的左侧,且,
∴,.
当时,.
∴.
∴.
∵,
∴.
【小问2详解】
方法一:如图1,连接AE.
∵,
∴,.
∴,,.
∵点A,点B关于对称轴对称,
∴.
∴.
∴.
∵,,
∴,
即.
∵,
∴.
∴.
∵,
∴解方程,得.
方法二:如图2,过点D作交BC于点H.
由方法一,得,.
∴.
∵,
∴,
.
∴.
∵,,
∴.
∴.
∴,即.
∵,
∴解方程,得.
【小问3详解】
.
设PC与x轴交于点Q,当P在第四象限时,点Q总在点B的左侧,此时,即.
∵,
∴.
,
,
∴.
解得,
又,
∴.
【点睛】本题考查了二次函数综合,求二次函数与坐标轴的交点,角度问题,解直角三角形,相似三角形的性质,三角形内角和定理,综合运用以上知识是解题的关键.
27. (1)如图1,在△ABC中,,CD平分,交AB于点D,//,交BC于点E.
①若,,求BC的长;
②试探究是否为定值.如果是,请求出这个定值;如果不是,请说明理由.
(2)如图2,和是△ABC的2个外角,,CD平分,交AB的延长线于点D,//,交CB的延长线于点E.记△ACD的面积为,△CDE的面积为,△BDE的面积为.若,求的值.
【答案】(1)①;②是定值,定值为1;(2)
【解析】
【分析】(1)①证明,根据相似三角形的性质求解即可;
②由,可得,由①同理可得,计算;
(2)根据平行线的性质、相似三角形的性质可得,又,则,可得,设,则.证明,可得,过点D作于H.分别求得,进而根据余弦的定义即可求解.
【详解】(1)①∵CD平分,
∴.
∵,
∴.
∴.
∵,
∴.
∴.
∴.
∴.
∴.
∴.
②∵,
∴.
由①可得,
∴.
∴.
∴是定值,定值为1.
(2)∵,
∴.
∵,
∴.
又∵,
∴.
设,则.
∵CD平分,
∴.
∵,
∴.
∴.
∵,
∴.
∴.
∴.
∵,
∴.
∴.
∴.
∴.
如图,过点D作于H.
∵,
∴.
∴.
【点睛】本题考查了相似三角形的性质与判定,求余弦,掌握相似三角形的性质与判定是解题的关键.
培训前
成绩(分)
6
7
8
9
10
划记
正正
正
正
人数(人)
12
4
7
5
4
培训后
成绩(分)
6
7
8
9
10
划记
一
正
正正正
人数(人)
4
1
3
9
15
进货批次
甲种水果质量
(单位:千克)
乙种水果质量
(单位:千克)
总费用
(单位:元)
第一次
60
40
1520
第二次
30
50
1360
相关试卷
这是一份2024年江苏省苏州市中考数学模拟试卷(解析版),共31页。
这是一份2024年江苏省苏州市中考数学模拟试题 (解析版),共28页。
这是一份2024年江苏省苏州市中考数学模拟试题 (解析版),共28页。