湖南省郴州市2024年中考数学模拟试题(含解析)
展开
这是一份湖南省郴州市2024年中考数学模拟试题(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.(3分)如图,数轴上表示﹣2的相反数的点是( )
A.MB.NC.PD.Q
2.(3分)如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
3.(3分)邓小平曾说:“中东有石油,中国有稀土”.稀土是加工制造国防、军工等工业品不可或缺的原料.据有关统计数据表明:至2017年止,我国已探明稀土储量约4400万吨,居世界第一位,请用科学记数法表示 44 000 000为( )
A.44×106B.4.4×107C.4.4×108D.0.44×109
4.(3分)下列运算正确的是( )
A.( x2)3=x5B.+=C.x•x2•x4=x6D.=
5.(3分)一元二次方程2x2+3x﹣5=0的根的情况为( )
A.有两个相等的实数根B.有两个不相等的实数根
C.只有一个实数根D.没有实数根
6.(3分)下列采用的调查方式中,合适的是( )
A.为了解东江湖的水质情况,采用抽样调查的方式
B.我市某企业为了解所生产的产品的合格率,采用普查的方式
C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式
D.某市教育部门为了解该市中小学生的视力情况,采用普查的方式
7.(3分)如图,分别以线段AB的两端点A,B为圆心,大于AB长为半径画弧,在线段AB的两侧分别交于点E,F,作直线EF交AB于点O.在直线EF上任取一点P(不与O重合),连接PA,PB,则下列结论不一定成立的是( )
A.PA=PBB.OA=OBC.OP=OFD.PO⊥AB
8.(3分)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是( )
A.B.2C.D.4
二、填空题(共8小题,每小题3分,满分24分)
9.(3分)二次根式中,x的取值范围是 .
10.(3分)若=,则= .
11.(3分)如图,直线a,b被直线c,d所截.若a∥b,∠1=130°,∠2=30°,则∠3的度数为 度.
12.(3分)某校举行演讲比赛,七个评委对小明的打分如下:9,8,7,6,9,9,7,这组数据的中位数是 .
13.(3分)某商店今年6月初销售纯净水的数量如下表所示:
观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为 瓶.
14.(3分)如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作s甲2、s乙2,则s甲2 s乙2.(填“>”,“=”或“<”)
15.(3分)已知某几何体的三视图如图,其中主视图和左视图都是腰长为5,底边长为4的等腰三角形,则该几何体的侧面展开图的面积是 .(结果保留π)
16.(3分)如图,点A,C分别是正比例函数y=x的图象与反比例函数y=的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为 .
三、解答题(17~19题每题6分,20~23题每题8分,24~25题每题10分,26题12分,共82分)
17.(6分)计算:(3﹣π)0﹣2cs30°+|1﹣|+()﹣1.
18.(6分)先化简,再求值:﹣,其中a=.
19.(6分)如图,▱ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.
20.(8分)我市去年成功举办2018郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:
(1)该小区居民在这次随机调查中被调查到的人数是 人,m= ,并补全条形统计图;
(2)若该小区有居民1200人,试估计去B地旅游的居民约有多少人?
(3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率)
21.(8分)如图所示,巡逻船在A处测得灯塔C在北偏东45°方向上,距离A处30km.在灯塔C的正南方向B处有一渔船发出求救信号,巡逻船接到指示后立即前往施救.已知B处在A处的北偏东60°方向上,这时巡逻船与渔船的距离是多少?
(精确到0.01km.参考数据:≈1.414,≈1.732,≈2.449)
22.(8分)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.
(1)每台A,B两种型号的机器每小时分别加工多少个零件?
(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?
23.(8分)如图,已知AB是⊙O的直径,CD与⊙O相切于点D,且AD∥OC.
(1)求证:BC是⊙O的切线;
(2)延长CO交⊙O于点 E.若∠CEB=30°,⊙O的半径为2,求的长.(结果保留π)
24.(10分)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质.列表:
描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.
(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;
(2)研究函数并结合图象与表格,回答下列问题:
①点A(﹣5,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1 y2,x1 x2;(填“>”,“=”或“<”)
②当函数值y=2时,求自变量x的值;
③在直线x=﹣1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;
④若直线y=a与函数图象有三个不同的交点,求a的取值范围.
25.(10分)如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把∠BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.
(1)求证:△A1DE∽△B1EH;
(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF的形状,并说明理由;
(3)如图3,在(2)的条件下,点G为△DEF内一点,且∠DGF=150°,试探究DG,EG,FG的数量关系.
26.(12分)已知抛物线y=ax2+bx+3与x轴分别交于A(﹣3,0),B(1,0)两点,与y轴交于点 C.
(1)求抛物线的表达式及顶点D的坐标;
(2)点F是线段AD上一个动点.
①如图1,设k=,当k为何值时,CF=AD?
②如图2,以A,F,O为顶点的三角形是否与△ABC相似?若相似,求出点F的坐标;若不相似,请说明理由.
2024年湖南省郴州市中考数学试卷
参考答案与试题解析
一、选择题(共8小题,每小题3分,共24分)
1.【解答】解:﹣2的相反数是2,
故选:D.
2.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、既是轴对称图形,又是中心对称图形,故此选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选:C.
3.【解答】解:将 44 000 000用科学记数法可表示为4.4×107.
故选:B.
4.【解答】解:A、( x2)3=x6,故本选项错误;
B、+=+2=3,故本选项错误;
C、x•x2•x4=x7,故本选项错误;
D、=,故本选项正确;
故选:D.
5.【解答】解:一元二次方程2x2﹣3x+5=0中,
△=32﹣4×2×9(﹣5)>0,
∴有两个不相等的实数根.
故选:B.
6.【解答】解:A、为了解东江湖的水质情况,采用抽样调查的方式,合适;
B、我市某企业为了解所生产的产品的合格率,因调查范围广,工作量大采用普查的方式不合适;
C、某小型企业给在职员工做工作服前进行尺寸大小的调查,因调查范围小采用抽样调查的方式不合适;
D、某市教育部门为了解该市中小学生的视力情况,因调查范围广,采用普查的方式不合适,
故选:A.
7.【解答】解:∵由作图可知,EF垂直平分AB,
∴PA=PB,故A选项正确;
OA=OB,故B选项正确;
OE=OF,故C选项错误;
PO⊥AB,故D选项正确;
故选:C.
8.【解答】解:设正方形ADOF的边长为x,
由题意得:BE=BD=4,CE=CF=6,
∴BC=BE+CE=BD+CF=10,
在Rt△ABC中,AC2+AB2=BC2,
即(6+x)2+(x+4)2=102,
整理得,x2+10x﹣24=0,
解得:x=2,或x=﹣12(舍去),
∴x=2,
即正方形ADOF的边长是2;
故选:B.
二、填空题(共8小题,每小题3分,满分24分)
9.【解答】解:根据题意,得
x﹣2≥0,
解得,x≥2;
故答案是:x≥2.
10.【解答】解:∵=,
∴2x+2y=3x,
故2y=x,
则=.
故答案为:.
11.【解答】解:∵a∥b,
∴∠3=∠4,
∵∠1=∠2+∠4=∠2+∠3,∠1=130°,∠2=30°,
∴130°=30°+∠3,
解得:∠3=100°.
故答案为:100.
12.【解答】解:把这组数据按照从小到大的顺序排列为:6,7,7,8,9,9,9,
故这组数据的中位数是8.
故答案为:8.
13.【解答】解:这是一个一次函数模型,设y=kx+b,则有,
解得,
∴y=5x+115,
当x=7时,y=150,
∴预测今年6月7日该商店销售纯净水的数量约为150瓶,
故答案为150.
14.【解答】解:由图象可知:乙偏离平均数大,甲偏离平均数小,所以乙波动大,不稳定,方差大,即S甲2<S乙2.
故答案为:<.
15.【解答】解:由三视图可知,该几何体是圆锥,
∴侧面展开图的面积=π•2•5=10π,
故答案为10π.
16.【解答】解:∵A、C是两函数图象的交点,
∴A、C关于原点对称,
∵CD⊥x轴,AB⊥x轴,
∴OA=OC,OB=OD,
∴S△AOB=S△BOC=S△DOC=S△AOD,
又∵反比例函数y=的图象上,
∴S△AOB=S△BOC=S△DOC=S△AOD=×4=2,
∴S四边形ABCD=4S△AOB=4×2=8,
故答案为:8.
三、解答题(17~19题每题6分,20~23题每题8分,24~25题每题10分,26题12分,共82分)
17.【解答】解:原式=1﹣2×+﹣1+2=2.
18.【解答】解:﹣
=
=
=
=
=,
当a=时,原式===1.
19.【解答】解:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠FAE=∠CDE,
∵E是AD的中点,
∴AE=DE,
又∵∠FEA=∠CED,
∴△FAE≌△CDE(ASA),
∴CD=FA,
又∵CD∥AF,
∴四边形ACDF是平行四边形.
20.【解答】解:(1)该小区居民在这次随机调查中被调查到的人数是20÷10%=200(人),
则m%=×100%=35%,即m=35,
C景区人数为200﹣(20+70+20+50)=40(人),
补全条形图如下:
故答案为:200,35;
(2)估计去B地旅游的居民约有1200×35%=420(人);
(3)画树状图如下:
由树状图知,共有12种等可能结果,其中选到A,C两个景区的有2种结果,
所以选到A,C两个景区的概率为=.
21.【解答】解:延长CB交过A点的正东方向于D,如图所示:
则∠CDA=90°,
由题意得:AC=30km,∠CAD=90°﹣45°=45°,∠BAD=90°﹣60°=30°,
∴AD=CD=AC=15,AD=BD,
∴BD==5,
∴BC=CD﹣BD=15﹣5≈15×1.414﹣5×2.449≈8.97(km);
答:巡逻船与渔船的距离约为8.97km.
22.【解答】解:(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,
依题意,得:=,
解得:x=6,
经检验,x=6是原方程的解,且符合题意,
∴x+2=8.
答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件.
(2)设A型机器安排m台,则B型机器安排(10﹣m)台,
依题意,得:,
解得:6≤m≤8.
∵m为正整数,
∴m=6,7,8.
答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.
23.【解答】(1)证明:连接OD,
∵CD与⊙O相切于点D,
∴∠ODC=90°,
∵OD=OA,
∴∠OAD=∠ODA,
∵AD∥OC,
∴∠COB=∠OAD,∠COD=∠ODA,
∴∠COB=∠COD,
在△COD和△COB中
,
∴△COD≌△COB(SAS),
∴∠ODC=∠OBC=90°,
∴BC是⊙O的切线;
(2)解:∵∠CEB=30°,
∴∠COB=60°,
∵∠COB=∠COD,
∴∠BOD=120°,
∴的长:=π.
24.【解答】解:(1)如图所示:
(2)①A(﹣5,y1),B(﹣,y2),
A与B在y=﹣上,y随x的增大而增大,∴y1<y2;
C(x1,),D(x2,6),
C与D在y=|x﹣1|上,观察图象可得x1<x2;
故答案为<,<;
②当y=2时,2=﹣,∴x=﹣(不符合);
当y=2时,2=|x﹣1|,∴x=3或x=﹣1;
③∵P(x3,y3),Q(x4,y4)在x=﹣1的右侧,
∴﹣1≤x≤3时,点关于x=1对称,
∵y3=y4,
∴x3+x4=2;
④由图象可知,0<a<2;
25.【解答】解:(1)证明:由折叠的性质可知:∠DAE=∠DA1E=90°,∠EBH=∠EB1H=90°,∠AED=∠A1ED,∠BEH=∠B1EH,
∴∠DEA1+∠HEB1=90°.
又∵∠HEB1+∠EHB1=90°,
∴∠DEA1=∠EHB1,
∴△A1DE∽△B1EH;
(2)结论:△DEF是等边三角形;
理由如下:
∵直线MN是矩形ABCD的对称轴,
∴点A1是EF的中点,即A1E=A1F,
在△A1DE和△A1DF中
,
∴△A1DE≌△A1DF(SAS),
∴DE=DF,∠FDA1=∠EDA1,
又∵△ADE≌△A1DE,∠ADF=90°.
∴∠ADE=∠EDA1=∠FDA1=30°,
∴∠EDF=60°,
∴△DEF是等边三角形;
(3)DG,EG,FG的数量关系是DG2+GF2=GE2,
理由如下:由(2)可知△DEF是等边三角形;将△DGE逆时针旋转60°到△DG'F位置,如解图(1),
∴G'F=GE,DG'=DG,∠GDG'=60°,
∴△DGG'是等边三角形,
∴GG'=DG,∠DGG'=60°,
∵∠DGF=150°,
∴∠G'GF=90°,
∴G'G2+GF2=G'F2,
∴DG2+GF2=GE2,
26.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),
∴,解得:,
∴抛物线解析式为y=﹣x2﹣2x+3;
∵y=﹣x2﹣2x+3=﹣(x+1)2+4
∴顶点D的坐标为(﹣1,4);
(2)①∵在Rt△AOC中,OA=3,OC=3,
∴AC2=OA2+OC2=18,
∵D(﹣1,4),C(0,3),A(﹣3,0),
∴CD2=12+12=2
∴AD2=22+42=20
∴AC2+CD2=AD2
∴△ACD为直角三角形,且∠ACD=90°.
∵,
∴F为AD的中点,
∴,
∴.
②在Rt△ACD中,tan,
在Rt△OBC中,tan,
∴∠ACD=∠OCB,
∵OA=OC,
∴∠OAC=∠OCA=45°,
∴∠FAO=∠ACB,
若以A,F,O为顶点的三角形与△ABC相似,则可分两种情况考虑:
当∠AOF=∠ABC时,△AOF∽△CBA,
∴OF∥BC,
设直线BC的解析式为y=kx+b,
∴,解得:,
∴直线BC的解析式为y=﹣3x+3,
∴直线OF的解析式为y=﹣3x,
设直线AD的解析式为y=mx+n,
∴,解得:,
∴直线AD的解析式为y=2x+6,
∴,解得:,
∴F(﹣).
当∠AOF=∠CAB=45°时,△AOF∽△CAB,
∵∠CAB=45°,
∴OF⊥AC,
∴直线OF的解析式为y=﹣x,
∴,解得:,
∴F(﹣2,2).
综合以上可得F点的坐标为(﹣)或(﹣2,2).日期
1
2
3
4
数量(瓶)
120
125
130
135
x
…
﹣3
﹣
﹣2
﹣
﹣1
﹣
0
1
2
3
…
y
…
1
2
1
0
1
2
…
相关试卷
这是一份湖南省郴州市2024年中考数学模拟试题(含解析),共17页。
这是一份湖南省郴州市2024年中考数学模拟汇编试题(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖南省郴州市中考数学模拟试卷(含解析版),共23页。