搜索
    上传资料 赚现金
    英语朗读宝

    湖南省郴州市2024年中考数学模拟试题(含解析)

    湖南省郴州市2024年中考数学模拟试题(含解析)第1页
    湖南省郴州市2024年中考数学模拟试题(含解析)第2页
    湖南省郴州市2024年中考数学模拟试题(含解析)第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省郴州市2024年中考数学模拟试题(含解析)

    展开

    这是一份湖南省郴州市2024年中考数学模拟试题(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    1.(3分)如图,数轴上表示﹣2的相反数的点是( )
    A.MB.NC.PD.Q
    2.(3分)如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是( )
    A.B.
    C.D.
    3.(3分)邓小平曾说:“中东有石油,中国有稀土”.稀土是加工制造国防、军工等工业品不可或缺的原料.据有关统计数据表明:至2017年止,我国已探明稀土储量约4400万吨,居世界第一位,请用科学记数法表示 44 000 000为( )
    A.44×106B.4.4×107C.4.4×108D.0.44×109
    4.(3分)下列运算正确的是( )
    A.( x2)3=x5B.+=C.x•x2•x4=x6D.=
    5.(3分)一元二次方程2x2+3x﹣5=0的根的情况为( )
    A.有两个相等的实数根B.有两个不相等的实数根
    C.只有一个实数根D.没有实数根
    6.(3分)下列采用的调查方式中,合适的是( )
    A.为了解东江湖的水质情况,采用抽样调查的方式
    B.我市某企业为了解所生产的产品的合格率,采用普查的方式
    C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式
    D.某市教育部门为了解该市中小学生的视力情况,采用普查的方式
    7.(3分)如图,分别以线段AB的两端点A,B为圆心,大于AB长为半径画弧,在线段AB的两侧分别交于点E,F,作直线EF交AB于点O.在直线EF上任取一点P(不与O重合),连接PA,PB,则下列结论不一定成立的是( )
    A.PA=PBB.OA=OBC.OP=OFD.PO⊥AB
    8.(3分)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是( )
    A.B.2C.D.4
    二、填空题(共8小题,每小题3分,满分24分)
    9.(3分)二次根式中,x的取值范围是 .
    10.(3分)若=,则= .
    11.(3分)如图,直线a,b被直线c,d所截.若a∥b,∠1=130°,∠2=30°,则∠3的度数为 度.
    12.(3分)某校举行演讲比赛,七个评委对小明的打分如下:9,8,7,6,9,9,7,这组数据的中位数是 .
    13.(3分)某商店今年6月初销售纯净水的数量如下表所示:
    观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为 瓶.
    14.(3分)如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作s甲2、s乙2,则s甲2 s乙2.(填“>”,“=”或“<”)
    15.(3分)已知某几何体的三视图如图,其中主视图和左视图都是腰长为5,底边长为4的等腰三角形,则该几何体的侧面展开图的面积是 .(结果保留π)
    16.(3分)如图,点A,C分别是正比例函数y=x的图象与反比例函数y=的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为 .
    三、解答题(17~19题每题6分,20~23题每题8分,24~25题每题10分,26题12分,共82分)
    17.(6分)计算:(3﹣π)0﹣2cs30°+|1﹣|+()﹣1.
    18.(6分)先化简,再求值:﹣,其中a=.
    19.(6分)如图,▱ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.
    20.(8分)我市去年成功举办2018郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:
    (1)该小区居民在这次随机调查中被调查到的人数是 人,m= ,并补全条形统计图;
    (2)若该小区有居民1200人,试估计去B地旅游的居民约有多少人?
    (3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率)
    21.(8分)如图所示,巡逻船在A处测得灯塔C在北偏东45°方向上,距离A处30km.在灯塔C的正南方向B处有一渔船发出求救信号,巡逻船接到指示后立即前往施救.已知B处在A处的北偏东60°方向上,这时巡逻船与渔船的距离是多少?
    (精确到0.01km.参考数据:≈1.414,≈1.732,≈2.449)
    22.(8分)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.
    (1)每台A,B两种型号的机器每小时分别加工多少个零件?
    (2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?
    23.(8分)如图,已知AB是⊙O的直径,CD与⊙O相切于点D,且AD∥OC.
    (1)求证:BC是⊙O的切线;
    (2)延长CO交⊙O于点 E.若∠CEB=30°,⊙O的半径为2,求的长.(结果保留π)
    24.(10分)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质.列表:
    描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.
    (1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;
    (2)研究函数并结合图象与表格,回答下列问题:
    ①点A(﹣5,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1 y2,x1 x2;(填“>”,“=”或“<”)
    ②当函数值y=2时,求自变量x的值;
    ③在直线x=﹣1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;
    ④若直线y=a与函数图象有三个不同的交点,求a的取值范围.
    25.(10分)如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把∠BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.
    (1)求证:△A1DE∽△B1EH;
    (2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF的形状,并说明理由;
    (3)如图3,在(2)的条件下,点G为△DEF内一点,且∠DGF=150°,试探究DG,EG,FG的数量关系.
    26.(12分)已知抛物线y=ax2+bx+3与x轴分别交于A(﹣3,0),B(1,0)两点,与y轴交于点 C.
    (1)求抛物线的表达式及顶点D的坐标;
    (2)点F是线段AD上一个动点.
    ①如图1,设k=,当k为何值时,CF=AD?
    ②如图2,以A,F,O为顶点的三角形是否与△ABC相似?若相似,求出点F的坐标;若不相似,请说明理由.
    2024年湖南省郴州市中考数学试卷
    参考答案与试题解析
    一、选择题(共8小题,每小题3分,共24分)
    1.【解答】解:﹣2的相反数是2,
    故选:D.
    2.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;
    B、是轴对称图形,不是中心对称图形,故本选项错误;
    C、既是轴对称图形,又是中心对称图形,故此选项正确;
    D、是轴对称图形,不是中心对称图形,故本选项错误.
    故选:C.
    3.【解答】解:将 44 000 000用科学记数法可表示为4.4×107.
    故选:B.
    4.【解答】解:A、( x2)3=x6,故本选项错误;
    B、+=+2=3,故本选项错误;
    C、x•x2•x4=x7,故本选项错误;
    D、=,故本选项正确;
    故选:D.
    5.【解答】解:一元二次方程2x2﹣3x+5=0中,
    △=32﹣4×2×9(﹣5)>0,
    ∴有两个不相等的实数根.
    故选:B.
    6.【解答】解:A、为了解东江湖的水质情况,采用抽样调查的方式,合适;
    B、我市某企业为了解所生产的产品的合格率,因调查范围广,工作量大采用普查的方式不合适;
    C、某小型企业给在职员工做工作服前进行尺寸大小的调查,因调查范围小采用抽样调查的方式不合适;
    D、某市教育部门为了解该市中小学生的视力情况,因调查范围广,采用普查的方式不合适,
    故选:A.
    7.【解答】解:∵由作图可知,EF垂直平分AB,
    ∴PA=PB,故A选项正确;
    OA=OB,故B选项正确;
    OE=OF,故C选项错误;
    PO⊥AB,故D选项正确;
    故选:C.
    8.【解答】解:设正方形ADOF的边长为x,
    由题意得:BE=BD=4,CE=CF=6,
    ∴BC=BE+CE=BD+CF=10,
    在Rt△ABC中,AC2+AB2=BC2,
    即(6+x)2+(x+4)2=102,
    整理得,x2+10x﹣24=0,
    解得:x=2,或x=﹣12(舍去),
    ∴x=2,
    即正方形ADOF的边长是2;
    故选:B.
    二、填空题(共8小题,每小题3分,满分24分)
    9.【解答】解:根据题意,得
    x﹣2≥0,
    解得,x≥2;
    故答案是:x≥2.
    10.【解答】解:∵=,
    ∴2x+2y=3x,
    故2y=x,
    则=.
    故答案为:.
    11.【解答】解:∵a∥b,
    ∴∠3=∠4,
    ∵∠1=∠2+∠4=∠2+∠3,∠1=130°,∠2=30°,
    ∴130°=30°+∠3,
    解得:∠3=100°.
    故答案为:100.
    12.【解答】解:把这组数据按照从小到大的顺序排列为:6,7,7,8,9,9,9,
    故这组数据的中位数是8.
    故答案为:8.
    13.【解答】解:这是一个一次函数模型,设y=kx+b,则有,
    解得,
    ∴y=5x+115,
    当x=7时,y=150,
    ∴预测今年6月7日该商店销售纯净水的数量约为150瓶,
    故答案为150.
    14.【解答】解:由图象可知:乙偏离平均数大,甲偏离平均数小,所以乙波动大,不稳定,方差大,即S甲2<S乙2.
    故答案为:<.
    15.【解答】解:由三视图可知,该几何体是圆锥,
    ∴侧面展开图的面积=π•2•5=10π,
    故答案为10π.
    16.【解答】解:∵A、C是两函数图象的交点,
    ∴A、C关于原点对称,
    ∵CD⊥x轴,AB⊥x轴,
    ∴OA=OC,OB=OD,
    ∴S△AOB=S△BOC=S△DOC=S△AOD,
    又∵反比例函数y=的图象上,
    ∴S△AOB=S△BOC=S△DOC=S△AOD=×4=2,
    ∴S四边形ABCD=4S△AOB=4×2=8,
    故答案为:8.
    三、解答题(17~19题每题6分,20~23题每题8分,24~25题每题10分,26题12分,共82分)
    17.【解答】解:原式=1﹣2×+﹣1+2=2.
    18.【解答】解:﹣




    =,
    当a=时,原式===1.
    19.【解答】解:∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠FAE=∠CDE,
    ∵E是AD的中点,
    ∴AE=DE,
    又∵∠FEA=∠CED,
    ∴△FAE≌△CDE(ASA),
    ∴CD=FA,
    又∵CD∥AF,
    ∴四边形ACDF是平行四边形.
    20.【解答】解:(1)该小区居民在这次随机调查中被调查到的人数是20÷10%=200(人),
    则m%=×100%=35%,即m=35,
    C景区人数为200﹣(20+70+20+50)=40(人),
    补全条形图如下:
    故答案为:200,35;
    (2)估计去B地旅游的居民约有1200×35%=420(人);
    (3)画树状图如下:
    由树状图知,共有12种等可能结果,其中选到A,C两个景区的有2种结果,
    所以选到A,C两个景区的概率为=.
    21.【解答】解:延长CB交过A点的正东方向于D,如图所示:
    则∠CDA=90°,
    由题意得:AC=30km,∠CAD=90°﹣45°=45°,∠BAD=90°﹣60°=30°,
    ∴AD=CD=AC=15,AD=BD,
    ∴BD==5,
    ∴BC=CD﹣BD=15﹣5≈15×1.414﹣5×2.449≈8.97(km);
    答:巡逻船与渔船的距离约为8.97km.
    22.【解答】解:(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,
    依题意,得:=,
    解得:x=6,
    经检验,x=6是原方程的解,且符合题意,
    ∴x+2=8.
    答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件.
    (2)设A型机器安排m台,则B型机器安排(10﹣m)台,
    依题意,得:,
    解得:6≤m≤8.
    ∵m为正整数,
    ∴m=6,7,8.
    答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.
    23.【解答】(1)证明:连接OD,
    ∵CD与⊙O相切于点D,
    ∴∠ODC=90°,
    ∵OD=OA,
    ∴∠OAD=∠ODA,
    ∵AD∥OC,
    ∴∠COB=∠OAD,∠COD=∠ODA,
    ∴∠COB=∠COD,
    在△COD和△COB中

    ∴△COD≌△COB(SAS),
    ∴∠ODC=∠OBC=90°,
    ∴BC是⊙O的切线;
    (2)解:∵∠CEB=30°,
    ∴∠COB=60°,
    ∵∠COB=∠COD,
    ∴∠BOD=120°,
    ∴的长:=π.
    24.【解答】解:(1)如图所示:
    (2)①A(﹣5,y1),B(﹣,y2),
    A与B在y=﹣上,y随x的增大而增大,∴y1<y2;
    C(x1,),D(x2,6),
    C与D在y=|x﹣1|上,观察图象可得x1<x2;
    故答案为<,<;
    ②当y=2时,2=﹣,∴x=﹣(不符合);
    当y=2时,2=|x﹣1|,∴x=3或x=﹣1;
    ③∵P(x3,y3),Q(x4,y4)在x=﹣1的右侧,
    ∴﹣1≤x≤3时,点关于x=1对称,
    ∵y3=y4,
    ∴x3+x4=2;
    ④由图象可知,0<a<2;
    25.【解答】解:(1)证明:由折叠的性质可知:∠DAE=∠DA1E=90°,∠EBH=∠EB1H=90°,∠AED=∠A1ED,∠BEH=∠B1EH,
    ∴∠DEA1+∠HEB1=90°.
    又∵∠HEB1+∠EHB1=90°,
    ∴∠DEA1=∠EHB1,
    ∴△A1DE∽△B1EH;
    (2)结论:△DEF是等边三角形;
    理由如下:
    ∵直线MN是矩形ABCD的对称轴,
    ∴点A1是EF的中点,即A1E=A1F,
    在△A1DE和△A1DF中

    ∴△A1DE≌△A1DF(SAS),
    ∴DE=DF,∠FDA1=∠EDA1,
    又∵△ADE≌△A1DE,∠ADF=90°.
    ∴∠ADE=∠EDA1=∠FDA1=30°,
    ∴∠EDF=60°,
    ∴△DEF是等边三角形;
    (3)DG,EG,FG的数量关系是DG2+GF2=GE2,
    理由如下:由(2)可知△DEF是等边三角形;将△DGE逆时针旋转60°到△DG'F位置,如解图(1),
    ∴G'F=GE,DG'=DG,∠GDG'=60°,
    ∴△DGG'是等边三角形,
    ∴GG'=DG,∠DGG'=60°,
    ∵∠DGF=150°,
    ∴∠G'GF=90°,
    ∴G'G2+GF2=G'F2,
    ∴DG2+GF2=GE2,
    26.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),
    ∴,解得:,
    ∴抛物线解析式为y=﹣x2﹣2x+3;
    ∵y=﹣x2﹣2x+3=﹣(x+1)2+4
    ∴顶点D的坐标为(﹣1,4);
    (2)①∵在Rt△AOC中,OA=3,OC=3,
    ∴AC2=OA2+OC2=18,
    ∵D(﹣1,4),C(0,3),A(﹣3,0),
    ∴CD2=12+12=2
    ∴AD2=22+42=20
    ∴AC2+CD2=AD2
    ∴△ACD为直角三角形,且∠ACD=90°.
    ∵,
    ∴F为AD的中点,
    ∴,
    ∴.
    ②在Rt△ACD中,tan,
    在Rt△OBC中,tan,
    ∴∠ACD=∠OCB,
    ∵OA=OC,
    ∴∠OAC=∠OCA=45°,
    ∴∠FAO=∠ACB,
    若以A,F,O为顶点的三角形与△ABC相似,则可分两种情况考虑:
    当∠AOF=∠ABC时,△AOF∽△CBA,
    ∴OF∥BC,
    设直线BC的解析式为y=kx+b,
    ∴,解得:,
    ∴直线BC的解析式为y=﹣3x+3,
    ∴直线OF的解析式为y=﹣3x,
    设直线AD的解析式为y=mx+n,
    ∴,解得:,
    ∴直线AD的解析式为y=2x+6,
    ∴,解得:,
    ∴F(﹣).
    当∠AOF=∠CAB=45°时,△AOF∽△CAB,
    ∵∠CAB=45°,
    ∴OF⊥AC,
    ∴直线OF的解析式为y=﹣x,
    ∴,解得:,
    ∴F(﹣2,2).
    综合以上可得F点的坐标为(﹣)或(﹣2,2).日期
    1
    2
    3
    4
    数量(瓶)
    120
    125
    130
    135
    x

    ﹣3

    ﹣2

    ﹣1

    0
    1
    2
    3

    y

    1
    2
    1
    0
    1
    2

    相关试卷

    湖南省郴州市2024年中考数学模拟试题(含解析):

    这是一份湖南省郴州市2024年中考数学模拟试题(含解析),共17页。

    湖南省郴州市2024年中考数学模拟汇编试题(含解析):

    这是一份湖南省郴州市2024年中考数学模拟汇编试题(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖南省郴州市中考数学模拟试卷(含解析版):

    这是一份2024年湖南省郴州市中考数学模拟试卷(含解析版),共23页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map