开学活动
搜索
    上传资料 赚现金

    专题05图形的性质选填题-三年(2022-2024)中考数学真题分项汇编(黑龙江专用)

    专题05图形的性质选填题-三年(2022-2024)中考数学真题分项汇编(黑龙江专用)第1页
    专题05图形的性质选填题-三年(2022-2024)中考数学真题分项汇编(黑龙江专用)第2页
    专题05图形的性质选填题-三年(2022-2024)中考数学真题分项汇编(黑龙江专用)第3页
    还剩72页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题05图形的性质选填题-三年(2022-2024)中考数学真题分项汇编(黑龙江专用)

    展开

    这是一份专题05图形的性质选填题-三年(2022-2024)中考数学真题分项汇编(黑龙江专用),共75页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。
    1.(2022·黑龙江牡丹江·中考真题)如图,BD是的直径,A,C在圆上,,的度数是( )
    A.50°B.45°C.40°D.35°
    2.(2023·黑龙江牡丹江·中考真题)如图,A,B,C为上的三个点,,若,则的度数是( )

    A.B.C.D.
    3.(2023·黑龙江齐齐哈尔·中考真题)如图,直线,分别与直线l交于点A,B,把一块含角的三角尺按如图所示的位置摆放,若,则的度数是( )

    A.B.C.D.
    4.(2024·黑龙江齐齐哈尔·中考真题)将一个含角的三角尺和直尺如图放置,若,则的度数是( )
    A.30°B.C.D.60°
    5.(2022·黑龙江·中考真题)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数的图象上,顶点A在反比例函数的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是( )
    A.2B.1C.D.
    6.(2022·黑龙江大庆·中考真题)如图,将平行四边形沿对角线折叠,使点A落在E处.若,,则的度数为( )
    A.B.C.D.
    7.(2022·黑龙江哈尔滨·中考真题)如图,是的直径,点P在的延长线上,与相切于点A,连接,若,则的度数为( )
    A.B.C.D.
    8.(2022·黑龙江牡丹江·中考真题)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是( )
    A.90°B.100°C.120°D.150°
    9.(2023·黑龙江绥化·中考真题)将一副三角板按下图所示摆放在一组平行线内,,,则的度数为( )

    A.B.C.D.
    10.(2023·黑龙江牡丹江·中考真题)用一个圆心角为,半径为8的扇形作一个圆锥的侧面,则这个圆锥的底面直径是( )
    A.6B.5C.4D.3
    11.(2023·黑龙江哈尔滨·中考真题)如图,是的切线,A为切点,连接﹐点C在上,,连接并延长,交于点D,连接.若,则的度数为( )

    A.B.C.D.
    12.(2022·黑龙江牡丹江·中考真题)从正面,左面,上面观察由一些大小相同的小正方体搭成的几何体的形状图(如图所示),则搭成这个几何体的小正方体的个数是( )
    A.3B.4C.5D.6
    13.(2024·黑龙江绥化·中考真题)如图,四边形是菱形,,,于点,则的长是( )
    A.B.C.D.
    14.(2024·黑龙江绥化·中考真题)下列叙述正确的是( )
    A.顺次连接平行四边形各边中点一定能得到一个矩形
    B.平分弦的直径垂直于弦
    C.物体在灯泡发出的光照射下形成的影子是中心投影
    D.相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等
    15.(2022·黑龙江齐齐哈尔·中考真题)如图所示,直线a∥b,点A在直线a上,点B在直线b上,AC=BC,∠C=120°,∠1=43°,则∠2的度数为( )
    A.57°B.63°
    C.67°D.73°
    16.(2022·黑龙江·中考真题)如图,中,,AD平分与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若的面积是24,,则PE的长是( )
    A.2.5B.2C.3.5D.3
    17.(2022·黑龙江大庆·中考真题)平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足.点Q为线段的中点,则点Q运动路径的长为( )
    A.B.C.D.
    18.(2022·黑龙江牡丹江·中考真题)如图,等边三角形OAB,点B在x轴正半轴上,,若反比例函数图象的一支经过点A,则k的值是( )
    A.B.C.D.
    19.(2022·黑龙江牡丹江·中考真题)下列图形是黄金矩形的折叠过程:第一步,如图(1),在一张矩形纸片一端折出一个正方形,然后把纸片展平;第二步,如图(2),把正方形折成两个相等的矩形再把纸片展平;第三步,折出内侧矩形的对角线AB,并把AB折到图(3)中所示的AD处;第四步,如图(4),展平纸片,折出矩形BCDE就是黄金矩形.则下列线段的比中:①,②,③,④,比值为的是( )
    A.①②B.①③C.②④D.②③
    20.(2023·黑龙江齐齐哈尔·中考真题)如图,在正方形中,,动点M,N分别从点A,B同时出发,沿射线,射线的方向匀速运动,且速度的大小相等,连接,,.设点M运动的路程为,的面积为,下列图像中能反映与之间函数关系的是( )

    B.
    C. D.
    21.(2023·黑龙江绥化·中考真题)如图,在菱形中,,,动点,同时从点出发,点以每秒个单位长度沿折线向终点运动;点以每秒个单位长度沿线段向终点运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为秒,的面积为个平方单位,则下列正确表示与函数关系的图象是( )

    B.
    C. D.
    22.(2023·黑龙江·中考真题)如图,是等腰三角形,过原点,底边轴,双曲线过两点,过点作轴交双曲线于点,若,则的值是( )

    A.B.C.D.
    23.(2023·黑龙江·中考真题)如图,在平面直角坐标中,矩形的边,将矩形沿直线折叠到如图所示的位置,线段恰好经过点,点落在轴的点位置,点的坐标是( )

    A.B.C.D.
    24.(2023·黑龙江牡丹江·中考真题)在以“矩形的折叠”为主题的数学活动课上,某位同学进行了如下操作:
    第一步:将矩形纸片的一端,利用图①的方法折出一个正方形,然后把纸片展平;
    第二步:将图①中的矩形纸片折叠,使点C恰好落在点F处,得到折痕,如图②.
    根据以上的操作,若,,则线段的长是( )

    A.3B.C.2D.1
    25.(2023·黑龙江大庆·中考真题)将两个完全相同的菱形按如图方式放置,若,,则( )

    A.B.C.D.
    26.(2024·黑龙江大兴安岭地·中考真题)如图,菱形中,点是BD的中点,,垂足为,交BD于点,,,则的长为( )

    A.B.C.D.
    27.(2024·黑龙江牡丹江·中考真题)如图,四边形是的内接四边形,是的直径,若,则的度数为( )

    A.B.C.D.
    28.(2024·黑龙江牡丹江·中考真题)小明同学手中有一张矩形纸片,,,他进行了如下操作:
    第一步,如图①,将矩形纸片对折,使与重合,得到折痕,将纸片展平.
    第二步,如图②,再一次折叠纸片,把沿折叠得到,交折痕于点E,则线段的长为( )
    A.B.C.D.
    29.(2024·黑龙江大庆·中考真题)如图,在一次综合实践课上,为检验纸带①、②的边线是否平行,小庆和小铁采用了两种不同的方法:小庆把纸带①沿折叠,量得;小铁把纸带②沿折叠,发现与重合,与重合.且点C,G,D在同一直线上,点E,H,F也在同一直线上.则下列判断正确的是( )
    A.纸带①、②的边线都平行
    B.纸带①、②的边线都不平行
    C.纸带①的边线平行,纸带②的边线不平行
    D.纸带①的边线不平行,纸带②的边线平行
    30.(2024·黑龙江大庆·中考真题)如图,在矩形中,,,点M是边的中点,点N是边上任意一点,将线段绕点M顺时针旋转,点N旋转到点,则周长的最小值为( )
    A.15B.C.D.18
    二、填空题
    31.(2022·黑龙江牡丹江·中考真题)如图,,,请添加一个条件 ,使.
    32.(2022·黑龙江绥化·中考真题)如图,正六边形和正五边形内接于,且有公共顶点A,则的度数为 度.
    33.(2022·黑龙江牡丹江·中考真题)如图,在平面直角坐标系中,点,,将平行四边形OABC绕点O旋转90°后,点B的对应点坐标是 .
    34.(2023·黑龙江齐齐哈尔·中考真题)若圆锥的底面半径长2cm,母线长3cm,则该圆锥的侧面积为 (结果保留).
    35.(2023·黑龙江齐齐哈尔·中考真题)如图,在四边形中,,于点.请添加一个条件: ,使四边形成为菱形.

    36.(2023·黑龙江绥化·中考真题)如图,的半径为,为的弦,点为上的一点,将沿弦翻折,使点与圆心重合,则阴影部分的面积为 .(结果保留与根号)

    37.(2023·黑龙江·中考真题)如图,是的直径,切于点A,交于点,连接,若,则 .
    38.(2023·黑龙江牡丹江·中考真题)如图,将的按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,与尺下沿重合,与尺上沿的交点B在尺上的读数恰为,若按相同的方式将的放置在该刻度尺上,则与尺上沿的交点C在尺上的读数为 .

    39.(2023·黑龙江大庆·中考真题)一个圆锥的底面半径为5,高为12,则它的体积为 .
    40.(2023·黑龙江哈尔滨·中考真题)一个扇形的圆心角是,弧长是,则扇形的半径是 cm.
    41.(2024·黑龙江大兴安岭地·中考真题)已知菱形中对角线相交于点O,添加条件 可使菱形成为正方形.
    42.(2024·黑龙江齐齐哈尔·中考真题)如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴正半轴于点M,交y轴正半轴于点N,再分别以点M,N为圆心,大于的长为半径画弧,两弧在第一象限交于点H,画射线,若,则 .
    43.(2024·黑龙江齐齐哈尔·中考真题)若圆锥的底面半径是1cm,它的侧面展开图的圆心角是直角,则该圆锥的高为 cm.
    44.(2024·黑龙江绥化·中考真题)用一个圆心角为,半径为的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为 .
    45.(2024·黑龙江大兴安岭地·中考真题)如图,内接于,AD是直径,若,则 .
    46.(2024·黑龙江大庆·中考真题)如图①,直角三角形的两个锐角分别是40°和50°,其三边上分别有一个正方形.执行下面的操作:由两个小正方形向外分别作锐角为40°和50°的直角三角形,再分别以所得到的直角三角形的直角边为边长作正方形.图②是1次操作后的图形.图③是重复上述步骤若干次后得到的图形,人们把它称为“毕达哥拉斯树”.若图①中的直角三角形斜边长为2,则10次操作后图形中所有正方形的面积和为 .
    47.(2024·黑龙江牡丹江·中考真题)如图,中,D是上一点,,D、E、F三点共线,请添加一个条件 ,使得.(只添一种情况即可)
    48.(2024·黑龙江绥化·中考真题)如图,,,.则 .
    49.(2022·黑龙江齐齐哈尔·中考真题)如图,直线与轴相交于点,与轴相交于点,过点作交轴于点,过点作轴交于点,过点作交轴于点,过点作轴交于点…,按照如此规律操作下去,则点的纵坐标是 .
    50.(2022·黑龙江绥化·中考真题)在长为2,宽为x()的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x的值为 .
    51.(2022·黑龙江·中考真题)如图,在中,AB是的弦,的半径为3cm,C为上一点,,则AB的长为 cm.
    52.(2022·黑龙江·中考真题)如图,菱形ABCD中,对角线AC,BD相交于点O,,,AH是的平分线,于点E,点P是直线AB上的一个动点,则的最小值是 .
    53.(2022·黑龙江·中考真题)在矩形ABCD中,,,点E在边CD上,且,点P是直线BC上的一个动点.若是直角三角形,则BP的长为 .
    54.(2022·黑龙江哈尔滨·中考真题)在中,为边上的高,,,则是 度.
    55.(2022·黑龙江哈尔滨·中考真题)如图,菱形的对角线相交于点O,点E在上,连接,点F为的中点,连接,若,,,则线段的长为 .
    56.(2022·黑龙江牡丹江·中考真题)的直径,AB是的弦,,垂足为M,,则AC的长为 .
    57.(2023·黑龙江齐齐哈尔·中考真题)矩形纸片中,,,点在AD边所在的直线上,且,将矩形纸片折叠,使点与点重合,折痕与AD,分别交于点,,则线段的长度为 .
    58.(2023·黑龙江·中考真题)在中,,点是斜边的中点,把绕点顺时针旋转,得,点,点旋转后的对应点分别是点,点,连接,,在旋转的过程中,面积的最大值是 .
    59.(2023·黑龙江牡丹江·中考真题)如图,在平面直角坐标系中,菱形的顶点A,B在x轴上,,,,将菱形绕点A旋转后,得到菱形,则点的坐标是 .

    60.(2023·黑龙江大庆·中考真题)在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片如图所示,点在边上,现将矩形折叠,折痕为,点对应的点记为点,若点恰好落在边上,则图中与一定相似的三角形是 .

    61.(2023·黑龙江哈尔滨·中考真题)矩形的对角线,BD相交于点,点在矩形边上,连接.若,,则 .
    62.(2023·黑龙江哈尔滨·中考真题)如图在正方形中,点E在上,连接,,F为的中点连接.若,则的长为 .

    63.(2024·黑龙江齐齐哈尔·中考真题)已知矩形纸片,,,点P在边上,连接,将沿所在的直线折叠,点B的对应点为,把纸片展平,连接,,当为直角三角形时,线段的长为 .
    64.(2024·黑龙江绥化·中考真题)如图,已知点,,,在平行四边形中,它的对角线与反比例函数的图象相交于点,且,则 .
    65.(2024·黑龙江绥化·中考真题)如图,已知,点为内部一点,点为射线、点为射线上的两个动点,当的周长最小时,则 .
    66.(2024·黑龙江大兴安岭地·中考真题)如图,在中,,,,,线段AD绕点旋转,点为CD的中点,则的最大值是 .
    67.(2024·黑龙江大兴安岭地·中考真题)矩形中,,,将AB沿过点A的一条直线折叠,折痕交直线于点(点P不与点B重合),点的对称点落在矩形对角线所在的直线上,则长为 .
    68.(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,正方形顶点M的坐标为,是等边三角形,点B坐标是1,0,在正方形内部紧靠正方形的边(方向为)做无滑动滚动,第一次滚动后,点A的对应点记为,的坐标是2,0;第二次滚动后,的对应点记为,的坐标是2,0;第三次滚动后,的对应点记为,的坐标是;如此下去,……,则的坐标是 .
    69.(2024·黑龙江牡丹江·中考真题)如图,在中,直径于点E,,则弦的长为 .
    70.(2024·黑龙江牡丹江·中考真题)矩形的面积是90,对角线交于点O,点E是边的三等分点,连接,点P是的中点,,连接,则的值为 .
    71.(2024·黑龙江大庆·中考真题)如图所示的曲边三角形也称作“莱洛三角形”,它可以按下述方法作出:作等边三角形;分别以点,,为圆心,以AB的长为半径作,,.三段弧所围成的图形就是一个曲边三角形.若该“莱洛三角形”的周长为,则它的面积是 .
    参考答案:
    1.C
    【分析】由BD是圆O的直径,可求得∠BCD = 90°又由圆周角定理可得∠D=∠A= 50°,继而求得答案.
    【详解】解:∵BD是的直径,
    ∴∠BCD=90°,
    ∴∠D=∠A= 50°,
    ∴∠DBC= 90°-∠D = 40°,
    故选: C.
    【点睛】此题考查了圆周角定理以及直角三角形的性质,此题难度不大,解题的关键是注意掌握数形结合思想的应用.
    2.C
    【分析】由,可得,结合,可得,再利用圆周角定理可得答案.
    【详解】解:∵,
    ∴,
    ∵,
    ∴,
    ∴,
    故选C.
    【点睛】本题考查的是圆周角定理的应用,熟记圆周角定理的含义是解本题的关键.
    3.B
    【分析】依据,即可得到,再根据,即可得出答案.
    【详解】解:如图,



    又,

    故选:B.
    【点睛】此题主要考查了平行线的性质,解本题的关键是熟记平行线的性质:两直线平行,同位角相等.
    4.B
    【分析】本题考查了对顶角的性质,三角形内角和定理.根据对顶角相等和三角形的内角和定理,即可求解.
    【详解】解:如图所示,
    由题意得,,,
    ∴,
    故选:B.
    5.D
    【分析】连接OA,设AB交y轴于点C,根据平行四边形的性质可得,AB∥OD,再根据反比例函数比例系数的几何意义,即可求解.
    【详解】解:如图,连接OA,设AB交y轴于点C,
    ∵四边形OBAD是平行四边形,平行四边形OBAD的面积是5,
    ∴,AB∥OD,
    ∴AB⊥y轴,
    ∵点B在反比例函数的图象上,顶点A在反比例函数的图象上,
    ∴,
    ∴,
    解得:.
    故选:D.
    【点睛】本题主要考查了平行四边形的性质,反比例函数比例系数的几何意义,熟练掌握平行四边形的性质,反比例函数比例系数的几何意义是解题的关键.
    6.C
    【分析】先根据平行四边形的性质,得出,根据平行线的性质,得出,根据折叠得出,根据三角形内角和得出∠A的度数即可.
    【详解】解:∵四边形ABCD为平行四边形,
    ∴,

    根据折叠可知,,
    ∴,

    ∴,故C正确.
    故选:C.
    【点睛】本题主要考查了平行四边形的性质,平行线的性质,三角形内角和定理,折叠性质,根据已知条件求出是解题的关键.
    7.A
    【分析】由切线性质得出,根据三角形的内角和是、对顶角相等求出,即可得出答案;
    【详解】解:PA与⊙O相切于点A,AD是⊙O的直径,








    故选:A.
    【点睛】本题考查圆内求角的度数,涉及知识点:切线的性质、对顶角相等、等腰三角形的性质、三角形的内角和是,解题关键根据切线性质推出.
    8.C
    【分析】圆锥的侧面展开图是一个扇形,利用弧长公式进行计算即可得.
    【详解】解:设这个圆锥的侧面展开图的圆心角是,
    由题意得:,
    解得,
    则这个圆锥的侧面展开图的圆心角是,
    故选:C.
    【点睛】本题考查了圆锥的侧面展开图、弧长公式,熟记弧长公式是解题关键.
    9.C
    【分析】根据两直线平行内错角相等即可求解.
    【详解】解:依题意,,
    ∵,
    ∴,
    故选:C.
    【点睛】本题考查了平行线的性质,熟练掌握两直线平行内错角相等是解题的关键.
    10.C
    【分析】先利用弧长公式求出扇形的弧长即圆锥的底面周长,再根据圆的周长公式求出直径即可.
    【详解】解:扇形的弧长:,
    则圆锥的底面直径:.
    故选:C.
    【点睛】本题考查圆锥侧面积公式,熟记公式的灵活应用是解题的关键.
    11.B
    【分析】利用垂线的性质及切线的性质得到和,再利用四边形的内角和为进而可求得,再利用等边对等角及三角形的内角和即可求解.
    【详解】解:,

    又是的切线,


    又,


    又,


    故选B.
    【点睛】本题考查了圆的切线的性质,四边形内角和是,等腰三角形的性质及三角形的内角和,熟练掌握其基本知识是解题的关键.
    12.B
    【分析】此题考查了从不同方位看简单几何组合体,熟知以上知识点是解题的关键.根据从正面看以及从左面看可得出该小正方形共有两行搭成,从上面看可确定几何体中小正方形的列数,从而得出答案.
    【详解】解:从正面看左边第一列两个正方体,第二列有一个正方体;从左面来看,左边第一列两个正方体,第二列有一个正方体;说明从上面来看时,后面有两个正方体,前面一排各有一个,所以此几何体共有四个正方体,
    故选:.
    13.A
    【分析】本题考查了勾股定理,菱形的性质,根据勾股定理求得,进而得出,进而根据等面积法,即可求解.
    【详解】解:∵四边形是菱形,,,
    ∴,,,
    在中,,
    ∴,
    ∵菱形的面积为,
    ∴,
    故选:A.
    14.C
    【分析】本题考查了矩形的判定,垂径定理,中心投影,弧、弦与圆心角的关系,根据相关定理逐项分析判断,即可求解.
    【详解】A. 顺次连接平行四边形各边中点不一定能得到一个矩形,故该选项不正确,不符合题意;
    B. 平分弦(非直径)的直径垂直于弦,故该选项不正确,不符合题意;
    C. 物体在灯泡发出的光照射下形成的影子是中心投影,故该选项正确,符合题意;
    D. 在同圆或等圆 中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等,故该选项不正确,不符合题意;
    故选:C.
    15.D
    【分析】根据等腰三角形的性质可求出,可得出,再根据平行线的性质可得结论.
    【详解】解:∵AC=BC,
    ∴是等腰三角形,



    ∵a∥b,

    故选:D
    【点睛】本题主要考查了等腰三角形的判定与性质,以及平行线的性质,求出是解答本题的关键.
    16.A
    【分析】连接DE,取AD的中点G,连接EG,先由等腰三角形“三线合一“性质,证得AD⊥BC,BD=CD,再由E是AB的中点,G是AD的中点,求出S△EGD=3,然后证△EGP≌△FDP(AAS),得GP=CP=1.5,从而得DG=3,即可由三角形面积公式求出EG长,由勾股定理即可求出PE长.
    【详解】解:如图,连接DE,取AD的中点G,连接EG,
    ∵AB=AC,AD平分与BC相交于点D,
    ∴AD⊥BC,BD=CD,
    ∴S△ABD==12,
    ∵E是AB的中点,
    ∴S△AED==6,
    ∵G是AD的中点,
    ∴S△EGD==3,
    ∵E是AB的中点,G是AD的中点,
    ∴EGBC,EG=BD=CD,
    ∴∠EGP=∠FDP=90°,
    ∵F是CD的中点,
    ∴DF=CD,
    ∴EG=DF,
    ∵∠EPG=∠FPD,
    ∴△EGP≌△FDP(AAS),
    ∴GP=PD=1.5,
    ∴GD=3,
    ∵S△EGD==3,即,
    ∴EG=2,
    在Rt△EGP中,由勾股定理,得
    PE==2.5,
    故选:A.
    【点睛】本题考查等腰三角形的性质,三角形面积,全等三角形判定与性质,勾股定理,熟练掌握三角形中线分三角形两部分的面积相等是解题的关键.
    17.B
    【分析】设点M的坐标为(0,m),点N的坐标为(n,0),则点Q的坐标为,根据,得出,然后分两种情况,或,得出与的函数关系式,即可得出Q横纵坐标的关系式,找出点Q的运动轨迹,根据勾股定理求出运动轨迹的长即可.
    【详解】设点M的坐标为(0,m),点N的坐标为(n,0),则点Q的坐标为,
    ∵,
    ∴,(,) ,
    ∵当时,,
    ∴,即,
    ∴此时点Q在一条线段上运动,线段的一个端点在x轴的负半轴上,坐标为(-4,0),另一端在y轴的非负半轴上,坐标为(0,4),
    ∴此时点Q的运动路径长为;
    ∵当时,,
    ∴,即,
    ∴此时点Q在一条线段上运动,线段的一个端点在x轴的正半轴上,坐标为(4,0),另一端在y轴的非负半轴上,坐标为(0,4),
    ∴此时点Q的运动路径长为;
    综上分析可知,点Q运动路径的长为,故B正确.
    故选:B.
    【点睛】本题主要考查了平面直角坐标系中的动点问题,根据题意找出点Q的运动轨迹是两条线段,是解题的关键.
    18.D
    【分析】过点A作AC⊥x轴于点C,则可根据勾股定理和三角形的面积求出OC和OA的长度,即可得出点A的坐标,将点A坐标代入反比例函数表达式即可求出k.
    【详解】
    过点A作AC⊥x轴于点C,
    ∵三角形AOB为等边三角形,
    ∴∠AOB=60°,
    设点A(a,b),
    则CO=a,AO=AB=OB=2a,根据勾股定理可得∶AC=b=,
    ∵,
    ∴,,解得:a=2,
    ∴b=,即点A(2, ),
    把点A(2, )代入得,k=,
    故选:D.
    【点睛】本题主要考查了反比例函数得图像和性质,等边三角形的性质,熟练的掌握反比例函数的性质和等边三角形的性质是解题的关键.
    19.B
    【分析】设,则,求出,,分别求出比值,作出判断.
    【详解】解:设,
    ∴,
    在中,,
    由折叠可知,,
    ∴ ,
    又∵,
    ∴,

    ,,

    ∴比值为的是①③,
    故选:B.
    【点睛】本题考查四边形综合题,黄金矩形的定义、勾股定理、翻折变换、矩形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    20.A
    【分析】先根据,求出与之间函数关系式,再判断即可得出结论.
    【详解】解:,



    故与之间函数关系为二次函数,图像开口向上,时,函数有最小值6,
    故选:A.
    【点睛】本题考查了正方形的性质,二次函数的图像与性质,本题的关键是求出与之间函数关系式,再判断与之间函数类型.
    21.A
    【分析】连接,过点作于点,根据已知条件得出是等边三角形,进而证明得出,当时,在上,当时,在上,根据三角形的面积公式得到函数关系式,
    【详解】解:如图所示,连接,过点作于点,
    当时,在上,

    菱形中,,,
    ∴,则是等边三角形,
    ∴,
    ∵,
    ∴,又


    ∴,

    当时,在上,

    ∴,
    综上所述,时的函数图象是开口向上的抛物线的一部分,当时,函数图象是直线的一部分,
    故选:A.
    【点睛】本题考查了动点问题的函数图象,二次函数图象的性质,一次函数图象的性质,菱形的性质,勾股定理,等边三角形的性质与判定,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.
    22.C
    【分析】设,根据反比例函数的中心对称性可得,然后过点A作于E,求出,点D的横坐标为,再根据列式求出,进而可得点D的纵坐标,将点D坐标代入反比例函数解析式即可求出的值.
    【详解】解:由题意,设,
    ∵过原点,
    ∴,
    过点A作于E,
    ∵是等腰三角形,
    ∴,
    ∴,点D的横坐标为,
    ∵底边轴,轴,
    ∴,
    ∴,
    ∴点D的纵坐标为,
    ∴,
    ∴,
    解得:,
    故选:C.

    【点睛】本题考查了反比例函数的图象和性质,中心对称的性质,等腰三角形的性质等知识,设出点B坐标,正确表示出点D的坐标是解题的关键.
    23.D
    【分析】首先证明,求出,连结,设与交于点F,然后求出,可得,再用含的式子表示出,最后在中,利用勾股定理构建方程求出即可解决问题.
    【详解】解:∵矩形的边,,
    ∴,,,
    由题意知,
    ∴,
    又∵,
    ∴,
    ∴,
    由折叠知,,
    ∴,
    ∴,即,
    连接,设与交于点F,
    ∴,
    ∵,
    ∴四边形是矩形,
    ∴,,,
    ∴,
    由折叠知,,
    ∴,
    ∵在中,,
    ∴,
    解得:,
    ∴点的坐标是,
    故选:D.

    【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质,折叠的性质以及勾股定理的应用等知识,通过证明三角形相似,利用相似三角形的性质求出的长是解题的关键.
    24.C
    【分析】根据折叠的性质得:,,,设,则,利用勾股定理求出,再证明,得,求解即可.
    【详解】解:如图,过点作,交于点,

    在和中,
    设,则,
    ,即:,
    解得:,
    ,,




    故选:C.
    【点睛】本题考查折叠问题及矩形的性质、正方形的性质,相似三角形的判定与性质,掌握折叠的性质并能熟练运用勾股定理方程思想是解题的关键.
    25.D
    【分析】由题意可得,由菱形的性质可得,由平行线的性质可得,进行计算即可得到答案.
    【详解】解:根据题意可得:,
    四边形为菱形,




    故选:D.
    【点睛】本题考查了菱形的性质、平行线的性质,熟练掌握菱形的性质、平行线的性质,是解题的关键.
    26.C
    【分析】本题主要考查了解三角形,菱形的性质、直角三角形斜边中线等于斜边一半.
    先由菱形性质可得对角线与交于点O,由直角三角形斜边中线等于斜边一半可得,进而由菱形对角线求出边长,由解三角形即可求出,.
    【详解】解:连接,如图,

    ∵菱形中,与互相垂直平分,
    又∵点是BD的中点,
    ∴A、O、C三点在同一直线上,
    ∴,
    ∵,,
    ∴,
    ∵,
    ∴,
    ∴,,
    ∵,,

    ∴,
    ∴,
    ∴,
    ∴,
    故选:C.
    27.B
    【分析】此题考查了圆周角定理、圆内接四边形的性质,连接,由是的直径得到,根据圆周角定理得到,得到,再由圆内接四边形对角互补得到答案.
    【详解】解:如图,连接,

    ∵是的直径,
    ∴,
    ∵,


    ∵四边形是的内接四边形,
    ∴,
    故选:B
    28.B
    【分析】本题考查了矩形与折叠问题,熟练掌握矩形的性质,折叠的性质,勾股定理是解题的关键.
    根据矩形的性质和折叠的性质推出,进而得出,设,则,根据勾股定理可得:,列出方程求解即可.
    【详解】解:∵四边形是矩形,
    ∴,
    由折叠可得:,,,,
    ∴四边形是矩形,
    ∴,
    ∴,
    ∴,
    ∴,
    设,则,
    在中,根据勾股定理可得:,
    即,
    解得:,
    即,
    故选:B.
    29.D
    【分析】对于纸带①,根据对顶角相等可得,利用三角形内角和定理求得,再根据折叠的性质可得,由平行线的判定即可判断;对于纸带②,由折叠的性质得,,,由平角的定义从而可得,,再根据平行线的判定即可判断.
    【详解】解:对于纸带①,
    ∵,
    ∴,
    ∴,
    由折叠的性质得,,
    ∴,
    ∴与不平行,
    对于纸带②,由折叠的性质得,,,
    又∵点C,G,D在同一直线上,点E,H,F也在同一直线上,
    ∴,,
    ∴,,
    ∴,
    ∴,
    综上所述,纸带①的边线不平行,纸带②的边线平行,
    故选:D.
    【点睛】本题考查平行线的判定、对顶角相等、三角形内角和定理、折叠的性质,熟练掌握平行线的判定和折叠的性质是解题的关键.
    30.B
    【分析】本题考查了旋转的性质,矩形的性质,勾股定理,确定点的轨迹是解题的关键.由旋转的性质结合证明,推出,得到点在平行于,且与的距离为5的直线上运动,作点关于直线的对称点,连接交直线于点,此时周长取得最小值,由勾股定理可求解.
    【详解】解:过点作,交于,过点作垂足为,
    ∵矩形,
    ∴,
    ∴,
    ∴四边形和都是矩形,
    ∴,
    由旋转的性质得,,
    ∴,
    ∴,
    ∴,
    ∴点在平行于,且与的距离为5的直线上运动,
    作点关于直线的对称点,连接交直线于点,此时周长取得最小值,最小值为,
    ∵,,
    ∴,
    故选:B.
    31.∠A=∠D(答案不唯一)
    【分析】根据角边角可证得,即可.
    【详解】解:可添加∠A=∠D,理由如下:
    ∵,
    ∴∠DCE=∠ACB,
    ∵,∠A=∠D,
    ∴.
    故答案为:∠A=∠D(答案不唯一)
    【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.
    32.12
    【分析】连接AO,求出正六边形和正五边形的中心角即可作答.
    【详解】连接AO,如图,
    ∵多边形ABCDEF是正六边形,
    ∴∠AOB=360°÷6=60°,
    ∵多边形AHIJK是正五边形,
    ∴∠AOH=360°÷5=72°,
    ∴∠BOH=∠AOH-∠AOB=72°-60°=12°,
    故答案为:12.
    【点睛】本题考查了正多边形的中心角的知识,掌握正多边形中心角的计算方法是解答本题的关键.
    33.或
    【分析】根据旋转可得: BM = B1M1 = B2M2 = 3,∠AOA1 =∠AOA2 = 90°,可得B1和B2的坐标,即是B'的坐标.
    【详解】解:∵A(-1,2), OC= 4,
    ∴ C(4,0),B(3,2),M(0,2), BM = 3,
    AB//x轴,BM= 3.
    将平行四边形OABC绕点O分别顺时针、逆时针旋转90°后,
    由旋转得:OM=OM1=OM2=2,
    ∠AOA1=∠AOA2=90°
    BM=B1M1=B2M2=3,
    A1B1⊥x轴,A2B2⊥x轴,
    ∴B1和B2的坐标分别为: (-2,3), (2,-3),
    ∴B'即是图中的B1和B2,坐标就是, B' (-2, 3), (2,-3),
    故答案为: (-2,3)或 (2, -3).
    【点睛】本题考查了平行四边形的性质,坐标与图形的性质,旋转的性质,正确的识别图形是解题的关键.
    34.
    【分析】根据圆锥的侧面积公式,把相应数值代入即可求解.
    【详解】解:.
    故答案为:.
    【点睛】本题考查了圆锥侧面积的计算,解题的关键是牢记圆锥的侧面积的计算公式.
    35.(答案不唯一)
    【分析】根据题意,先证明四边形是平行四边形,根据,可得四边形成为菱形.
    【详解】解:添加条件
    ∵,
    ∴四边形是平行四边形,
    ∵,
    ∴四边形成为菱形.
    添加条件
    ∵,
    ∴四边形是平行四边形,
    ∵,
    ∴四边形成为菱形.
    添加条件
    ∵,

    ∵,,

    ∴,
    ∴四边形是平行四边形,
    ∵,
    ∴四边形成为菱形.
    添加条件
    在与中,

    ∴,
    ∴四边形是平行四边形,
    ∵,
    ∴四边形成为菱形.
    故答案为:(或或等).
    【点睛】本题考查了平行四边形的判定,菱形的判定,熟练掌握菱形的判定定理是解题的关键.
    36.
    【分析】根据折叠的性质得出是等边三角形,则,,根据阴影部分面积即可求解.
    【详解】解:如图所示,连接,设交于点

    ∵将沿弦翻折,使点与圆心重合,
    ∴,

    ∴,
    ∴是等边三角形,
    ∴,,
    ∴,
    ∴阴影部分面积
    故答案为:.
    37.34
    【分析】首先根据等边对等角得到,然后利用外角的性质得到,利用切线的性质得到,最后利用三角形内角和定理求解即可.
    【详解】解:∵,,
    ∴,
    ∴,
    ∵切于点A,
    ∴,
    ∴.
    故答案为:34.
    【点睛】此题考查了切线的性质和三角形的外角的性质,三角形内角和定理等知识,解题的关键是熟练掌握以上知识点.
    38.
    【分析】根据平行线的性质得到,解直角三角形求出,再推出,进而得到,再求出的长即可得到答案.
    【详解】解:由题意得,,,,
    ∴,


    ∵,
    ∴,,
    ∴,
    ∴,
    ∴,
    ∴与尺上沿的交点C在尺上的读数为,
    故答案为:.
    【点睛】本题主要考查了解直角三角形,平行线的性质,等腰三角形的判定,正确求出的长是解题的关键.
    39.
    【分析】根据圆锥的体积=×底面积×高,即可求解.
    【详解】解:∵圆锥的底面半径为5,高为12,
    ∴它的体积,
    故答案为:.
    【点睛】本题考查圆锥的体积,关键是熟练掌握圆锥的体积=×底面积×高.
    40.3
    【分析】根据弧长公式即可得到关于扇形半径的方程即可求解.
    【详解】解:设扇形的半径是,则
    解得:.
    故答案为.
    【点睛】题主要考查了扇形的弧长,正确理解公式是解题的关键.
    41.或
    【分析】本题主要考查的是菱形和正方形的判定,熟练掌握菱形的判定定理是解题的关键,依据正方形的判定定理进行判断即可.
    【详解】解:根据对角线相等的菱形是正方形,可添加:;
    根据有一个角是直角的菱形是正方形,可添加的:;
    故添加的条件为:或.
    42.2
    【分析】此题主要考查了角平分线的尺规作图和性质,坐标与图形的性质,根据作图方法可得点H在第一象限的角平分线上,根据角平分线的性质和第一象限内点的坐标符号可得答案.
    【详解】解:根据作图方法可得点H在第一象限角平分线上;点H横纵坐标相等且为正数;

    解得:,
    故答案为:.
    43.
    【分析】本题考查了圆锥的计算.设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,然后解方程即可得母线长,然后利用勾股定理求得圆锥的高即可.
    【详解】解:设圆锥的母线长为R,
    根据题意得,
    解得:.
    即圆锥的母线长为,
    ∴圆锥的高cm,
    故答案是:.
    44.
    【分析】本题考查了弧长公式,根据圆锥的底面圆的周长等于侧面的弧长,代入数据计算,即可求解.
    【详解】解:设这个圆锥的底面圆的半径为,由题意得,
    解得:
    故答案为:.
    45.
    【分析】本题考查了圆周角定理,直角三角形的两个锐角互余,连接,根据直径所对的圆周角是直角得出,根据同弧所对的圆周角相等得出,进而根据直角三角形的两个锐角互余,即可求解.
    【详解】解:如图所示,连接,
    ∵内接于,AD是直径,
    ∴,
    ∵,,

    ∴,
    故答案为:.
    46.48
    【分析】本题主要考查了图形规律,直角三角形的性质、勾股定理、正方形的性质等知识.根据题意分别计算出图①、图②和图③的面积,得出规律即可求解.
    【详解】解:图①中,∵,
    根据勾股定理得,,
    ∴图①中所有正方形面积和为:,
    图②中所有正方形面积和,即1次操作后的图形中所有正方形的面积和为:

    图③中所有正方形面积和,即2次操作后的图形中所有正方形的面积和为:


    ∴n次操作后的图形中所有正方形的面积和为,
    ∴10次操作后的图形中所有正方形的面积和为,
    故答案为:48.
    47.或(答案不唯一)
    【分析】本题考查全等三角形的判定和性质,解答本题的关键是明确题意,利用全等三角形的判定解答.根据题目中的条件和全等三角形的判定,可以写出添加的条件,注意本题答案不唯一.
    【详解】解:∵
    ∴,,
    ∴添加条件,可以使得,
    添加条件,也可以使得,
    ∴;
    故答案为:或(答案不唯一).
    48.66
    【分析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得,根据三角形的外角的性质可得,根据平行线的性质,即可求解.
    【详解】解:∵,,
    ∴,
    ∴,
    ∵,
    ∴,
    故答案为:.
    49.
    【分析】先根据30°的特殊直角三角形,如,,,求出B点,B1点的纵坐标,发现规律,即可
    【详解】∵
    当时,
    当时,
    故,
    ∴为30°的直角三角形


    ∴为30°的直角三角形

    ∴为30°的直角三角形
    ∵轴


    为30°的直角三角形
    同理:

    故:
    故答案为:
    【点睛】本题考查30°的特殊直角三角形;注意只用求点的纵坐标,即长度
    50. 或
    【分析】分析题意,根据x的取值范围不同,对剩下矩形的长宽进行讨论,求出满足题意的x值即可.
    【详解】解:第一次操作后剩下的矩形两边长为 和 ,

    又,


    则第一次操作后,剩下矩形的宽为,
    所以可得第二次操作后,剩下矩形一边为 ,
    另一边为: ,
    ∵第三次操作后,剩下的纸片恰为正方形,
    ∴第二次操作后剩下矩形的长是宽的2倍,
    分以下两种情况进行讨论:
    ①当 ,即时 ,
    第三次操作后剩下的矩形的宽为 ,长是 ,
    则由题意可知: ,
    解得: ;
    ②当 ,即时,
    第三次操作后剩下的矩形的宽为 ,长是 ,
    由题意得: ,
    解得: ,
    或者 .
    故答案为: 或 .
    【点睛】本题考查了矩形的性质,正方形的性质以及分类讨论的数学思想方法,熟练掌握矩形,正方形性质以及分类讨论的方法是解题的关键.
    51.
    【分析】连接OA、OB,过点O作OD⊥AB于点D,由垂径定理和圆周角定理可得,,再根据等腰三角形的性质可得,利用含30°角的直角三角形的性质和勾股定理即可求解.
    【详解】解:连接OA、OB,过点O作OD⊥AB于点D,
    ,,








    故答案为:.
    【点睛】本题考查了垂径定理,圆周角定理,等腰三角形的性质,含30°角的直角三角形的性质和勾股定理,熟练掌握知识点是解题的关键.
    52./
    【分析】作点O关于AB的对称点F,连接OF交AB于G,连接PE交直线AB于P,连接PO,则PO=PF,此时,PO+PE最小,最小值=EF,利用菱形的性质与直角三角形的性质,勾股定理,求出OF,OE长,再证明△EOF是直角三角形,然后由勾股定理求出EF长即可.
    【详解】解:如图,作点O关于AB的对称点F,连接OF交AB于G,连接PE交直线AB于P,连接PO,则PO=PF,此时,PO+PE最小,最小值=EF的长,
    ∵菱形ABCD,
    ∴AC⊥BD,OA=OC,OB=OD,AD=AB=3,
    ∵∠BAD=60°,
    ∴△ABD是等边三角形,
    ∴BD=AB=3,∠BAO=30°,
    ∴OB==,
    ∴OA=,
    ∴点O关于AB的对称点F,
    ∴OF⊥AB,OG=FG,
    ∴OF=2OG=OA=,∠AOG=60°,
    ∵CE⊥AH于E,OA=OC,
    ∴OE=OC=OA=,
    ∴∠AEC=∠CAE,
    ∵AH平分∠BAC,
    ∴∠CAE=15°,
    ∴∠AEO=∠CAE=15°,
    ∴∠COE=∠AEO+∠CAE=30°,
    ∴∠COE+∠AOG=30°+60°=90°,
    ∴∠FOE=90°,
    ∴由勾股定理,得EF=,
    ∴PO+PE最小值=.
    故答案为:.
    【点睛】本题考查菱形的性质,利用轴对称求最短距离问题,直角三角形的性质,勾股定理,作点O关于AB的对称点F,连接OF交AB于G,连接PE交直线AB于P,连接PO,则PO=PF,则PO+PE最小,最小值=EF的长是解题的关键.
    53.或或6
    【分析】分三种情况讨论:当∠APE=90°时,当∠AEP=90°时,当∠PAE=90°时,过点P作PF⊥DA交DA延长线于点F,即可求解.
    【详解】解:在矩形ABCD中,,,∠BAD=∠B=∠BCD=∠ADC=90°,
    如图,当∠APE=90°时,
    ∴∠APB+∠CPE=90°,
    ∵∠BAP+∠APB=90°,
    ∴∠BAP=∠CPE,
    ∵∠B=∠C=90°,
    ∴△ABP∽△PCE,
    ∴,即,
    解得:BP=6;
    如图,当∠AEP=90°时,
    ∴∠AED+∠PEC=90°,
    ∵∠DAE+∠AED=90°,
    ∴∠DAE=∠PEC,
    ∵∠C=∠D=90°,
    ∴△ADE∽△ECP,
    ∴,即,
    解得:,
    ∴;
    如图,当∠PAE=90°时,过点P作PF⊥DA交DA延长线于点F,
    根据题意得∠BAF=∠ABP=∠F=90°,
    ∴四边形ABPF为矩形,
    ∴PF=AB=9,AF=PB,
    ∵∠PAF+∠DAE=90°,∠PAF+∠APF=90°,
    ∴∠DAE=∠APF,
    ∵∠F=∠D=90°,
    ∴△APF∽△EAD,
    ∴,即,
    解得:,即;
    综上所述,BP的长为或或6.
    故答案为:或或6
    【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质,矩形的性质,并利用分类讨论思想解答是解题的关键.
    54.40或80/80或40
    【分析】根据题意,由于类型不确定,需分三种情况:高在三角形内部、高在三角形边上和高在三角形外部讨论求解.
    【详解】解:根据题意,分三种情况讨论:
    ①高在三角形内部,如图所示:
    在中,为边上的高,,



    ②高在三角形边上,如图所示:
    可知,

    故此种情况不存在,舍弃;
    ③高在三角形外部,如图所示:
    在中,为边上的高,,



    综上所述:或,
    故答案为:或.
    【点睛】本题考查求角度问题,在没有图形的情况下,必须考虑清楚各种不同的情况,根据题意分情况讨论是解决问题的关键.
    55.
    【分析】先根据菱形的性质找到Rt△AOE和Rt△AOB,然后利用勾股定理计算出菱形的边长BC的长,再根据中位线性质,求出OF的长.
    【详解】已知菱形ABCD,对角线互相垂直平分,
    ∴AC⊥BD,在Rt△AOE中,
    ∵OE=3,OA=4,
    ∴根据勾股定理得,
    ∵AE=BE,
    ∴,
    在Rt△AOB中,
    即菱形的边长为,
    ∵点F为的中点,点O为DB中点,
    ∴ .
    故答案为
    【点睛】本题考查了菱形的性质、勾股定理、中位线的判定与性质;熟练掌握菱形性质,并能结合勾股定理、中位线的相关知识点灵活运用是解题的关键.
    56.或
    【分析】分①点在线段上,②点在线段上两种情况,连接,先利用勾股定理求出的长,再在中,利用勾股定理求解即可得.
    【详解】解:由题意,分以下两种情况:
    ①如图,当点在线段上时,连接,
    的直径,






    ②如图,当点在线段上时,连接,
    同理可得:,


    综上,的长为或,
    故答案为:或.
    【点睛】本题考查了勾股定理、圆,正确分两种情况讨论是解题关键.
    57.或
    【分析】分点在点右边与左边两种情况分别画出图形,根据勾股定理即可求解.
    【详解】解:∵折叠,
    ∴,
    ∵四边形是矩形,

    ∴,


    ∴,
    当点在点的右侧时,如图所示,设交于点,

    ∵,,,
    ∴中,,
    则,
    ∵,

    ∴,
    当点在点的左侧时,如图所示,设交于点,
    ∵,,,
    ∴中,

    则,
    ∵,

    ∴,
    综上所述,的长为:或,
    故答案为:或.
    【点睛】本题考查了矩形与折叠问题,勾股定理,分类讨论是解题的关键.
    58./
    【分析】过点A作交的延长线于点G,求出,然后由旋转的性质可知点F在以A为圆心的长为半径的圆上运动,则可得如图中G、A、F三点共线时点F到直线的距离最大,求出距离的最大值,然后计算即可.
    【详解】解:如图,在中,,,点是斜边的中点,
    ∴,,,
    ∴,
    过点A作交的延长线于点G,
    ∴,
    又∵在旋转的过程中,点F在以A为圆心的长为半径的圆上运动,,
    ∴点F到直线的距离的最大值为,(如图,G、A、F三点共线时)
    ∴面积的最大值,
    故答案为:.

    【点睛】本题考查了含直角三角形的性质,直角三角形斜边中线的性质,旋转的性质,圆的基本性质等知识,根据旋转的性质求出点F到直线距离的最大值是解答本题的关键.
    59.或
    【分析】分两种情况:当绕点A顺时针旋转后,当绕点A逆时针旋转后,利用菱形的性质及直角三角形30度角的性质求解即可.
    【详解】解:当绕点A顺时针旋转后,如图,

    ∵,
    ∴,
    ∵菱形中,,
    ∴,
    延长交x轴于点E,
    ∴,,
    ∴,
    ∴,
    ∴;
    当绕点A逆时针旋转后,如图,延长交x轴于点F,
    ∵,,
    ∴,
    ∵菱形中,,
    ∴,
    ∴,,
    ∴,
    ∴,
    ∴;
    故答案为:或.
    【点睛】此题考查了菱形的性质,直角三角形30度角所对的直角边等于斜边的一半,旋转的性质,正确理解菱形的性质及旋转的性质是解题的关键.
    60.
    【分析】由矩形的性质得,从而得到,由折叠的性质可得:,从而得到,由此推断出.
    【详解】解:四边形是矩形,


    由折叠的性质可得:,




    故答案为:.
    【点睛】本题主要考查了矩形的性质、折叠的性质、相似三角形的判定,熟练掌握矩形的性质、折叠的性质、相似三角形的判定,是解题的关键.
    61.或
    【分析】根据题意画出图形,分点在上和上两种情况讨论即可求解.
    【详解】解:∵四边形是矩形,
    ∴,
    ∴,
    ∵,

    ∴,
    如图所示,当点在上时,

    ∵,

    如图所示,当点在上时,

    ∵,
    ∴,
    故答案为:或.
    【点睛】本题考查了矩形的性质,等边对等角,三角形的外角的性质,分类讨论是解题的关键.
    62.
    【分析】根据正方形的性质得到,,设,根据勾股定理求出的值,再根据勾股定理即可求出的长.
    【详解】解:正方形

    F为的中点,


    在中,

    解得
    故,
    在中
    解得(负值舍去)
    故答案为:.
    【点睛】本题主要考查了正方形的性质,勾股定理,直角三角形斜边上的中线的性质,熟练掌握勾股定理是解题的关键.
    63.或2
    【分析】本题主要考查了矩形的性质,折叠的性质,勾股定理,等腰三角形的判定和性质,分两种情况进行讨论:当时,当,分别画出图形,求出结果即可.
    【详解】解:∵四边形为矩形,
    ∴,,,
    当时,如图所示:
    ∵,
    ∴点在上,
    根据折叠可知:,,
    设,则,
    ∴,

    在中,根据勾股定理得:,
    即,
    解得:,
    即;
    当,如图所示:
    根据折叠可知:,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴;
    综上分析可知:或2.
    故答案为:或2,
    64.
    【分析】本题考查了反比例函数与平行四边形综合,相似三角形的性质与判定,分别过点,作轴的垂线,垂足分别为,根据平行四边形的性质得出,证明得出,,进而可得,即可求解.
    【详解】如图所示,分别过点,作轴的垂线,垂足分别为,
    ∵四边形是平行四边形,点,,,
    ∴,
    ∴,即,则,
    ∵轴,轴,



    ∴,


    故答案为:.
    65./度
    【分析】本题考查了轴对称最短路线问题,等腰三角形的性质,三角形内角和定理的应用;作点P关于,的对称点.连接.则当,是与,的交点时,的周长最短,根据对称的性质结合等腰三角形的性质即可求解.
    【详解】解:作关于,的对称点.连接.则当,是与,的交点时,的周长最短,连接,
    关于对称,
    ∴,
    同理,,,
    ,,
    是等腰三角形.

    故答案为:.
    66.
    【分析】本题考查了解直角三角形,三角形中位线定理,旋转的性质,解题的关键是找出取最大值时B、P、M三点的位置关系.
    取的中点M,连接、,利用解三角形求出,利用三角形中位线定理推出,当在下方时,如果B、P、M三点共线,则有最大值.
    【详解】解:取的中点M,连接、.
    ∵,,,
    ∴,
    ∴,
    ∴,
    ∵P、M分别是的中点,
    ∴.
    如图,当在下方时,如果B、P、M三点共线,则有最大值,
    最大值为,
    故答案为:.
    67.或或10
    【分析】本题考查了矩形与折叠问题,解直角三角形,先根据点的对称点落在矩形对角线所在的直线上的不同位置分三种情况,画出对应的图形,再根据矩形性质,利用解直角三角形求出即可.
    【详解】解:①点的对称点落在矩形对角线上,如图1,
    ∵在矩形中,,,
    由折叠性质可知:,


    ∴,

    ∴;
    ②点的对称点落在矩形对角线上,如图2,
    ∵在矩形中,,,,
    ∴,
    ∴,
    由折叠性质可知:,,

    ∴;
    ③点的对称点落在矩形对角线延长线上,如图3,
    ∵在矩形中,,,,
    ∴,
    ∴,
    由折叠性质可知:,,

    ∴;
    综上所述:则长为或或10.
    故答案为:或或10.
    68.
    【分析】本题考查了点的坐标变化规律,正方形性质,等边三角形性质,根据三角形的运动方式,依次求出点A的对应点,,,的坐标,发现规律即可解决问题.
    【详解】解:正方形顶点M的坐标为,
    ,
    是等边三角形,点B坐标是,
    等边三角形高为,
    由题知,
    的坐标是;
    的坐标是;
    的坐标是;
    继续滚动有,的坐标是;
    的坐标是;
    的坐标是;
    的坐标是;
    的坐标是;
    的坐标是;
    的坐标是;
    的坐标是;
    的坐标是;
    的坐标是;不断循环,循环规律为以,,,,12个为一组,

    的坐标与的坐标一样为,
    故答案为:.
    69.
    【分析】本题考查了垂径定理和勾股定理等知识,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.
    由垂径定理得,设的半径为,则,在中,由勾股定理得出方程,求出,即可得出,在中,由勾股定理即可求解.
    【详解】解:∵,

    设的半径为,则,
    在中,由勾股定理得:,即,
    解得:,


    在中,由勾股定理得:,
    故答案为:.
    70.13或
    【分析】本题考查了矩形的性质,三角形中位线定理,勾股定理.当时,利用三角形中位线定理求得,再求得矩形的边长,利用勾股定理求得的长,再根据斜边中线的性质即可求解;当时,同理求解即可.
    【详解】解:当时,如图,
    ∵矩形,
    ∴点O是的中点,
    ∵点P是的中点,
    ∴,,
    ∵点E是边的三等分点,
    ∴,,
    ∵矩形的面积是90,
    ∴,
    ∴,
    ∴,
    ∴;
    当时,如图,
    ∵矩形,
    ∴点O是的中点,
    ∵点P是的中点,
    ∴,,
    ∵点E是边的三等分点,
    ∴,,
    ∵矩形的面积是90,
    ∴,
    ∴,
    ∴,
    ∴;
    故答案为:13或.
    71.
    【分析】本题考查了弧长的计算,扇形面积的计算,三角函数的应用,曲边三角形是由三段弧组成,如果周长为,则其中的一段弧长就是,所以根据弧长公式可得,即正三角形的边长为.那么曲边三角形的面积=三角形的面积+三个弓形的面积,从而可得答案.
    【详解】解: 曲边三角形的周长为,为等边三角形,





    曲边三角形的面积为:
    故答案为:.
    题号
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    答案
    C
    C
    B
    B
    D
    C
    A
    C
    C
    C
    题号
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    答案
    B
    B
    A
    C
    D
    A
    B
    D
    B
    A
    题号
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    答案
    A
    C
    D
    C
    D
    C
    B
    B
    D
    B

    相关试卷

    专题04函数解答题-三年(2022-2024)中考数学真题分项汇编(黑龙江专用):

    这是一份专题04函数解答题-三年(2022-2024)中考数学真题分项汇编(黑龙江专用),共73页。试卷主要包含了解答题等内容,欢迎下载使用。

    专题03函数选填题-三年(2020-2022)中考数学真题分项汇编(黑龙江专用):

    这是一份专题03函数选填题-三年(2020-2022)中考数学真题分项汇编(黑龙江专用),共31页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。

    专题02方程与不等式-三年(2022-2024)中考数学真题分项汇编(黑龙江专用):

    这是一份专题02方程与不等式-三年(2022-2024)中考数学真题分项汇编(黑龙江专用),共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map