山东省德州市2024-2025学年高一上学期期中考试数学试卷(含答案)
展开
这是一份山东省德州市2024-2025学年高一上学期期中考试数学试卷(含答案),共15页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题
1.已知集合,,则( )
A.B.C.D.
2.命题“,函数是奇函数”的否定是( )
A.,函数是偶函数
B.,函数不是奇函数
C.,函数是偶函数
D.,函数不是奇函数
3.用二分法研究函数的零点时,通过计算得:,,则下一步应计算,则( )
A.0B.C.D.
4.已知函数则( )
A.B.C.0D.1
5.下列命题中正确的是( )
A.若,则B.若,则
C.若,,则D.若,,则
6.已知是定义在上的奇函数,当时,,则不等式的解集是( )
A.B.
C.D.
7.若,使成立,则实数m的取值范围是( )
A.B.C.D.
8.已知函数若存在实数k,使得函数有4个不同的零点,则实数k的取值范围是( )
A.B.C.D.
二、多项选择题
9.下列说法正确的是( )
A.命题“,”是真命题
B.命题“,使得”是假命题
C.是的充要条件
D.是集合中只有一个元素的充要条件
10.若,,且,则( )
A.的最大值是B.的最小值是8
C.的最小值是D.的最小值是
11.设,称为高斯函数,其中表示不超过x的最大整数,例如:,.若,则( )
A.
B.函数的值域为
C.若,则
D.点集所表示的平面区域的面积是4
三、填空题
12.函数的定义域为________.
13.若关于x的不等式的解集为,则实数a的取值范围为________.
14.把一个集合分成若干个非空子集,,…,,如果满足:①,②,那么这些子集的全体称为集合M的一个划分,记为.若集合,则集合M的一个划分为________;利用余数构造集合的划分是解决子集中元素整除问题的常用手段.设S为集合的子集,并且S中任意两个元素之和不能被3整除,则S中元素个数的最大值为________.
四、解答题
15.已知集合,.
(1)求集合;
(2)若,求实数m的取值范围.
16.已知是二次函数,且不等式的解集是.
(1)求函数的解析式;
(2)令,若函数在区间上的最小值为,求实数的值.
17.为了加强“平安校园”建设,保障师生安全,某校决定在校门口利用原有墙体,建造一间墙高为3米,底面面积为40平方米,且背面靠墙的长方体形状的校园警务室.由于此警务室的后背靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米500元,左右两面新建墙体报价为每平方米400元,屋顶和地面以及其他报价共计4800元,设屋子的左右两面墙的长度均为米.
(1)当左右两面墙的长度为多少米时,甲工程队整体报价最低,并求出最低整体报价;
(2)现有乙工程队也要参与此警务室建造竞标,其给出的整体报价为元,若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,求a的取值范围.
18.定义在上的函数满足:,当时,.
(1)求的值,判断函数的奇偶性,并说明理由;
(2)判断函数在上的单调性,并用定义证明;
(3)若,解关于x的不等式.
19.不动点原理是数学上一个重要的原理,也叫压缩映像原理,用初等数学可以简单的理解为:对于函数在其定义域内存在实数,使成立,则称是的一个不动点.
已知函数,.
(1)当,时,求函数的不动点;
(2)当时,若函数有两个不动点为,,且,,求实数b的取值范围;
(3)若函数的不动点为,2,且对任意,总存在,使得成立,求实数m的取值范围.
参考答案
1.答案:D
解析:由,得,解得,
所以,
故选:D.
2.答案:B
解析:“,函数是奇函数”的否定是:
“,函数不是奇函数”.
故选:B.
3.答案:C
解析:因为,,且函数图象连续不断,
所以函数在区间内有零点,
所以下一步应计算,,
故选:C.
4.答案:A
解析:由题意,,
故选:A
5.答案:C
解析:对于,,
因为,所以,,
所以,即,故错误;
对于,若,,则,,所以,故错误;
对于,,
因为,,所以,所以,
所以,即,故正确;
对于,若,,,,
则,,所以,故错误.
故选:.
6.答案:C
解析:当时,,由题意得,解得;
设,则,所以,
因为是定义在上的奇函数,
所以,
当时,,由题意得,解得;
所以的解集是,
故选:C.
7.答案:A
解析:设函数,
因为,使成立,
所以在区间上的最大值,
因为二次函数的开口向上,对称轴方程为,
所以函数在区间上单调递减,在上单调递增,
因为,结合二次函数的对称性可知,
当时,函数取最大值,最大值,解得;
故选:A.
8.答案:B
解析:由题意,,
函数有4个不同的零点,
函数的图象和直线有4个交点,
函数的图象如下:
由图可知,当时,函数单调递减,
当时,函数单调递增,且,
当时,函数单调递增,
当时,函数单调递减,且;
所以实数的取值范围是.
故选:B.
9.答案:BC
解析:对于A,,显然时,不成立,故A错误;
对于B,因为方程在实数集上无解,所以不存在,使得,故B正确;
对于C,当时,可得,当时,可得,故C正确;
对于D,当时,方程的解为,此时集合中只有一个元素,
当时,方程为,解得,
当时,由,解得,
故集合中只有一个元素,等价于或;故D错误;
故选:BC.
10.答案:BCD
解析:对于A,因为,,由基本不等式得,即,
解得,当且仅当,时,等号成立,
所以的最大值是,故A不正确;
对于B,因为,,
所以,
当且仅当,时,等号成立,
所以的最小值是8,故B正确;
对于C,因为,,由,得,
即,因为,
所以,即,
当且仅当,时,等号成立,
所以的最小值是,故C正确;
对于D,因为,,
,
当且仅当,时,等号成立,
所以的最小值是,故D正确.
故选:BCD.
11.答案:ABD
解析:对于A:,故A正确;
对于B:,故B正确;
对于C:当时,,满足,但,故C错误;
对于D:的解为或,
当时,或,
当时,或,,
所以点集所表示的平面区域的面积是4,故D正确.
故选:ABD.
12.答案:
解析:要使函数有意义,
须满足,
解得且,
故函数的定义域为.
故答案为:.
13.答案:
解析:由题意,对于方程,,
解得,则实数a的取值范围为,
故答案为:.
14.答案:,,(作答时,写出一个即可);676
解析:根据题意,若集合,则集合的划分有:
,,(作答时,写出一个即可);
对于集合,
所有被3除余数为1的元素组成的集合为,元素个数为675;
所有被3除余数为2的元素组成的集合为,元素个数为675;
所有能被3整除的元素组成的集合为,元素个数为674;
由题意,,且中任意两个元素之和不能被3整除,
又因为,集合中任意一个元素与集合中任意一个元素之和能被3整除,
所以集合中的元素和集合中的元素不能都属于集合S,
因为集合中任意一个元素与集合或与集合中任意一个元素之和都不能被3整除,
且集合中任意两个元素之和都能被3整除,
所以当集合S中元素个数最多时,
集合,其中;或者,其中;
故集合S中元素个数的最大值为676.
故答案为:,,(作答时,写出一个即可);676.
15.答案:(1)
(2)或.
解析:(1)解不等式可得;
所以可得.
(2)由可得,
当时,可得,解得,满足题意;
当时,可得,即,
由可得或,解得;
综上可得,实数m的取值范围为或.
16.答案:(1)
(2)或
解析:(1)由题意,设,,
因为的解集是,所以,且和是方程的解,
又,所以,解得,,,
所以.
(2),
所以二次函数开口向上,对称轴方程为:,
①当,即时,函数在区间上单调递增,
所以,由,解得;
②当,即时,
函数在区间上单调递减,在区间上单调递增,
所以,由,
解得;不满足,故舍去;
③当,即时,函数在区间上单调递减,
所以,由,解得;
综上所述,或.
17.答案:(1)当左右两面墙的长度为5米时,甲工程队整体报价最低,最低整体报价为28800元
(2)
解析:(1)设工程队的总造价为y元,
则,;
因为,,所以由基本不等式得,
,
当且仅当,即时,等号成立;
所以当左右两面墙的长度为5米时,甲工程队整体报价最低,最低整体报价为28800元.
(2)由题意得,对任意成立,
即,
令,则,
所以,对任意成立;
又,当且仅当,即时,等号成立;
则的最小值为;
所以a的取值范围是.
18.答案:(1),函数为偶函数,理由见解析;
(2)函数在上单调递减,证明见解析;
(3)或
解析:(1)由题意知,函数满足:,
令,则,解得,
令,则,解得,
函数为偶函数,理由如下:
由题意,函数的定义域为,
令,则,即,
所以函数为偶函数.
(2)函数在上单调递减,证明如下:
任取,令,,
则,即,
因为,则,由题意知,
所以,即,
所以函数在上单调递减.
(3)由,得;
令,则,所以,
因为函数为偶函数,所以,
当时,因为函数在上单调递减,
所以由,得,即,解得;
因为函数为偶函数,且函数在上单调递减,
所以函数在上单调递增,
当时,由,得,
所以,解得;
综上所述,不等式的解集为或.
19.答案:(1)0和4
(2)
(3)或
解析:(1)函数的不动点即为的实数根,
当,时,转化为方程的实数根,
解得或,所以函数的不动点为0和4;
(2)由题意可得方程有两个不相等的实数根,
即有两个不相等的实数根,,且,,
设,
令,解得,
所以实数b的取值范围为;
(3)由题意可知,2为方程即的两根,
则,解得,,
从而,
因为,即,
由题可知的值域是值域的子集,
因为在上是减函数,则,
即的值域为,
因为且,
当时,,不合题意舍,
当时,在上是增函数,则,
因为,则,解得,
当时,在上是减函数,则,
因为,则,解得,
故m的取值范围是或.
相关试卷
这是一份山东省德州市2024-2025学年高一上学期11月期中考试数学试题,共2页。
这是一份山东省德州市2024-2025学年高一上学期期中考试数学试题,文件包含教研室提供山东省德州市2024-2025学年高一上学期期中考试数学试题pdf、高一数学答案pdf等2份试卷配套教学资源,其中试卷共4页, 欢迎下载使用。
这是一份山东省德州市2024-2025学年高三上学期期中考试数学试卷(Word版附解析),文件包含山东省德州市2024-2025学年高一上学期11月期中考试数学试题Word版含解析docx、山东省德州市2024-2025学年高一上学期11月期中考试数学试题Word版无答案docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。