河北省邢台市襄都区2022-2023学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省邢台市襄都区2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列防疫的图标中是轴对称图形的是( )
A. B. C. D.
2. 下列运算错误的是( )
A. B. C. D. a2÷a3=a-1 (a≠0)
3. 如图所示是番茄果肉细胞结构图,番茄果肉细胞的直径约为0.0006米,将0.0006米用科学记数法表示为( )
A. 6×10-4米B. 6×10-3米C. 6×104米D. 6×10-5米
4. 已知等腰三角形的一个内角为50°,则它的另外两个内角是 ( )
A. 65°,65°B. 80°,50°
C. 65°,65°或80°,50°D. 不确定
5. 一个正多边形,它的一个内角恰好是一个外角的5倍,则这个正多边形的边数是( )
A. 十二B. 十一C. 十D. 九
6. 下列各式变形中,是因式分解的是( )
A. B.
C. D.
7. 将多项式进行因式分解的结果是( )
A. B. C. D.
8. 如图,已知∠ABD=∠BAC,添加下列条件还不能判定△ABC≌△BAD的依据是( )
A. AC=BDB. ∠DAB=∠CBAC. ∠C=∠DD. BC=AD
9. 如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB.若∠BA'C=110°,则∠1+∠2的度数为( )
A. 80°B. 90°C. 100°D. 110°
10. 在ΔABC中给定下面几组条件:
①∠ACB=30°,BC=4cm,AC=5cm ②∠ABC=30°,BC=4cm,AC=3cm
③∠ABC=90°,BC=4cm,AC=5cm ④∠ABC=120°,BC=4cm,AC=5cm
若根据每组条件画图,则ΔABC不能够唯一确定的是( )
A. ①B. ②C. ③D. ④
11. 如图,已知在△ABC中,,,嘉淇通过尺规作图得到,交于点D,根据其作图痕迹,可得的度数为( )
A. 120°B. 110°C. 100°D. 98°
12. 如图,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,则不正确的结论是( ).
A. Rt△ACD和Rt△BCE全等B. OA=OB
C. E是AC的中点D. AE=BD
13. 若一个凸多边形的每一个外角都等于36°,则这个多边形的内角和是( )
A. 1080°B. 1260°C. 1440°D. 1620°
14. 如果关于x的方程无解,则m的值是( )
A. 2B. 0C. 1D. –2
15. 如图,在△ABC,△ADE中,,,,C,D,E三点在同一条直线上,连接.以下四个结论中:①;②;③;④.正确的个数是( )
A. 1个B. 2个C. 3个D. 4个
16. 一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是( )(用含a,b的代数式表示).
A. abB. 2abC. a2﹣abD. b2+ab
二.填空题(本大题共3题,总计 12分)
17. (1)已知,则的值是_______.
(2)若是完全平方式,则_______.
18. 如图,中,,,分别以点,为圆心,以大于的长为半径画弧交于点,,直线交于点,交于点.若,则__.
19. 图,在△ABC中,AB AC,D为BC的中点,有下列结论:①△ABD ≌ △ACD;②∠B∠C;③AD平分∠BAC;④AD⊥BC;⑤△ABC的对称轴是线段AD. 其中正确的结论有__________个.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. (1)因式分解:;
(2)计算:.
21. 先化简:,再从0,2,3三个数中任选一个你喜欢的数代入求值.
22. 如图,已知△ABC的顶点分别为,,.
(1)作出△ABC关于x轴对称的图形,并写出点的坐标;
(2)若点是内部一点,则点P关于y轴对称的点的坐标是________.
(3)在x轴上找一点P,使得最小(画出图形,找到点P的位置).
23. 如图,AD平分∠BAC,∠EAD=∠EDA,∠B=54°.
(1)求∠EAC的度数;
(2)若∠CAD:∠E=2:5;求∠E的度数.
24. 计算:
(1)已知,求的值;
(2)已知实数m、n满足m2﹣10mn+26n2+4n+4=0,求mn的值.
25. 刘峰和李明相约周末去科技馆看展览,根据他们的谈话内容,试求李明乘公交车、刘峰骑自行车每小时各行多少千米?
26. 已知在平面直角坐标系中,点在x轴上,点B在y轴正半轴上,点C在第一象限内移动,,.
(1)如图1,当,点C的坐标为时,若D为的中点,点E在上,连接,过点D作,交于点F,点F的坐标为.
①求证:;
②点E的坐标为___________;
(2)如图2,当,点C关于x轴对称的点的坐标为时,分别求点B,点C的坐标;
(3)在(2)的条件下,该平面直角坐标系内存在点G(点G不与点A重合),使得是以为直角边的等腰直角三角形,请直接写出满足条件的点G的坐标.
邢台市襄都区2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:解:轴对称图形定义:把一个图形沿某条直线对折,对折后直线两旁的部分能完全重合.发现A,B,D都不符合定义,所以A,B,D都错误,只有C符合,所以C正确.
故答案为C.
2.【答案】:A
【解析】:A. ,故该选项不正确,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. a2÷a3=a-1 (a≠0) ,故该选项正确,不符合题意;
故选:A.
3.【答案】:A
【解析】:解:0.0006=6×10-4,
故选:A.
4.【答案】:C
【解析】:若50°为顶角,则底角为,
即另外两个内角为65°,65°;
若50°为底角,则顶角为,
即另外两个内角为80°,50°,
综上可得另外两个内角为65°,65°或80°,50°,
故选C.
5.【答案】:A
【解析】:解:一个正多边形,它的一个内角恰好是一个外角的5倍,且一个内角与一个外角的和为,
这个正多边形的每个外角都相等,且外角的度数为,
这个正多边形的边数为,
故选:A.
6.【答案】:D
【解析】:解:A、等式的右边不是整式的积的形式,故A错误;
B、等式右边分母含有字母不是因式分解,故B错误;
C、等式的右边不是整式的积的形式,故C错误;
D、是因式分解,故D正确;
故选D.
7.【答案】:C
【解析】:解:
故选:C.
8.【答案】:D
【解析】:由题意得,∠ABD=∠BAC,
A.在△ABC与△BAD中,
,
∴△ABC≌△BAD(SAS);
故选项正确;
B.在△ABC与△BAD中,
,
△ABC≌△BAD(ASA),
故选项正确;
C.在△ABC与△BAD中,
,
△ABC≌△BAD(AAS),
故选项正确;
D.在△ABC与△BAD中,
BC=AD,AB=BA,∠BAC=∠ABD(SSA),△ABC与△BAD不全等,故错误;
故选:D.
9.【答案】:A
【解析】:解:连接AA′,如图:
∵A'B平分∠ABC,A'C平分∠ACB,∠BA'C=110°,
∴∠A′CB+∠A′BC=70°,
∴∠ACB+∠ABC=140°,
∴∠BAC=180°-140°=40°,
∴∠1=∠DAA′+∠DA′A,∠2=∠EAA′+∠EA′A,
∵∠DAA′=∠DA′A,∠EAA′=∠EA′A,
∴∠1+∠2=2(∠DAA′+∠EAA′)=2∠BAC=80°.
故选:A
10.【答案】:B
【解析】:解:①BC=4cm,AC=5cm,∠ACB=30°,满足“SAS”,所以根据这组条件画图,△ABC唯一;
②BC=4cm,AC=3cm,∠ABC=30°,根据这组条件画图,△ABC可能为锐角三角形,也可为钝角三角形;
③BC=4cm,AC=5cm,∠ABC=90°;满足“HL”,所以根据这组条件画图,△ABC唯一;
④BC=4cm,AC=5cm,∠ABC=120°,根据这组条件画图,△ABC唯一.
所以,ΔABC不能够唯一确定的是②.
故选:B
11.【答案】:B
【解析】:根据作图痕迹可知,是∠ABC的平分线,
∵,,
∴
∵是∠ABC的平分线,
∴
∴
故选:B.
12.【答案】:C
【解析】:解:A.∵∠C=∠C=90°,
∴△ACD和△BCE是直角三角形,
在Rt△ACD和Rt△BCE中,
∵AD=BE,DC=CE,
∴Rt△ACD≌Rt△BCE(HL),正确;
B.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,
在△AOE和△BOD中,
∵
∴△AOE≌△BOD(AAS),
∴AO=OB,正确,不符合题意;
C.AE=BD,CE=CD,不能推出AE=CE,错误,符合题意;
D.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,正确,不符合题意.
故选C.
13.【答案】:C
【解析】:该多边形的变数为
此多边形内角和为
故选C
14.【答案】:A
【解析】:解:方程去分母得:m+1﹣x=0,
解得x=m+1,
当分式方程分母为0,即x=3时,方程无解,
则m+1=3,
解得m=2.
故选A.
15.【答案】:C
【解析】:解:①∵∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,
∵在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS),
∴BD=CE,
∵
∴
故本选项错误;
②∵△ABC为等腰直角三角形,
∴∠ABC=∠ACB=45°,
∴∠ABD+∠DBC=45°,
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∴∠ACE+∠DBC=45°,
故本选项正确;
③∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,
∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,
则BD⊥CE,
故本选项正确;
④∵∠BAC=∠DAE=90°,
∴∠BAE+∠DAC=360°-90°-90°=180°,
故此选项正确,
综上,三个结论是正确的,
故选:C.
16.【答案】:A
【解析】:解:设小正方形的边长为x,则大正方形的边长为a﹣2x=2x+b,
可得x=,大正方形边长为=,
则阴影部分面积为()2﹣4()2==ab,
故选:A.
二. 填空题
17.【答案】: ①. ②.
【解析】:解:(1)
∵
∴
∴原式
故答案为:-11;
(2)∵是完全平方公式
∴原式=
∴.
故答案为:.
18.【答案】: 6
【解析】:连接,如图,
由作法得垂直平分,
,
,
,
,
,
.
故答案为:6.
19.【答案】: 4
【解析】:解:∵AB=AC,BD=CD,
∴∠B=∠C,∠BAD=∠CAD,AD⊥BC,
在△ABD和△ACD中
∴△ABD≌△ACD,
△ABC的对称轴是线段AD所在的直线.
∴①②③④都符合题意,⑤不符合题意;
故答案为4.
三.解答题
20【答案】:
(1);
(2);
【解析】:
解:(1)原式
=;
(2)
=
=;
21【答案】:
x﹣3;﹣3.
【解析】:
原式=
=
=
=x﹣3.
由于分母不能为0,除式不能为0,
∴x≠2,x≠3,
∴x=0.
当x=0时,原式=0﹣3=﹣3.
22【答案】:
(1)图见解析,点的坐标为;
(2);
(3)见解析.
【解析】:
(1)分别找出A,B,C关于x轴对称的点A1,B1,C1,再顺次连接点即可;
(2)利用“关于谁对称谁不变,不关谁对称谁全变”可求出P的对称点坐标;
(3)过x轴作点A的对称点为A1,连接A1C交于x轴的点即为点P,使得最小.
【小问1详解】
解:先找出点A,B,C关于x轴对称的点A1,B1,C1,再顺次连接A1,B1,C1.
如图所示,即为所求:
的坐标为.
【小问2详解】
解:∵P关于y轴对称,则纵坐标不变,横坐标变成原来的相反数,
∴点P关于y轴对称的点的坐标是.
【小问3详解】
解:过x轴作点A的对称点为A1,连接A1C交于x轴的点即为点P,使得最小.点P如图所示:
【画龙点睛】本题考查作轴对称图形,找关于坐标轴对称的点的坐标,以及动点问题.关键是掌握画轴对称图形的方法:先找对称点,再连线;熟记关于坐标轴对称的点的坐标变化特征;利用对称性解决动点问题.
23【答案】:
(1)∠EAC=54°;
(2).
【解析】:
【小问1详解】
∵∠EAD=∠EDA,
∴∠EAC+∠CAD=∠B+∠BAD,
∵AD平分∠BAC,
∴∠CAD=∠BAD.
∴∠EAC=∠B.
∵∠B=54°,
∴∠EAC=54°.
【小问2详解】
设∠CAD=2x,则∠E=5x,∠DAB=2x,
∵∠B=54°,
∴∠EDA=∠EAD=2x+54°.
∵∠EDA+∠EAD+∠E=180°,
∴2x+54°+2x+54°+5x=180°.
解得x=8°.
∴∠E=5x=40°.
24【答案】:
(1)±1; (2)
【解析】:
【小问1详解】
解:∵,
∴,
∴,
即,
解得,
∴的值为;
【小问2详解】
解:∵m2﹣10mn+26n2+4n+4=0,
∴m2﹣10mn+25n2+n2+4n+4=0,
∴(m﹣5n)2+(n+2)2=0,
∴m﹣5n=0,n+2=0,
∴n=﹣2,m=﹣10,
∴mn=,
∴mn的值为.
【画龙点睛】本题主要考查利用完全平方和、完全平方差公式求代数式的值,需要熟练掌握及其变形.
25【答案】:
刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米
【解析】:
解:设刘峰骑自行车每小时行x千米,则李明乘公交车每小时行千米,
根据题意,得,
解得,
经检验,是所列分式方程的解,且符合题意,
∴(千米/时),
答:刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米.
26【答案】:
(1)①见解析;②
(2)
(3)或或
【解析】:
【小问1详解】
解:①连接.
,为的中点,
,平分,
,.
,
,
,
,
.
又,
,
.
,
;
②如图1,过点作轴,轴,分别交轴,轴于点,;过点作轴,轴,分别交轴,轴于点,,直线交于点;过点作轴于点,
,
,
,
,
,
,
,,
,
即点的坐标为,
故答案为:;
【小问2详解】
解:如图2,过点作轴,轴,分别交轴,轴于点,.
由题可得,,
点,点的坐标为,
点的坐标为,
,
.
在和中,
,
,
,
,
点的坐标为;
【小问3详解】
解:如图3,
若,时,且点在下方,过点作,过点作,
,,
,且,,
,
,,
,
点,
若,时,且点在上方,
同理可求点,
若,时,点在上方,
同理可求点,
综上所述,点的坐标为或或.
刘峰:我查好地图了,你看看
李明:好的,我家门口的公交车站,正好有一趟到科技馆那站停的车,我坐明天的车.
刘峰:从地图上看,我家到科技馆的距离比你家近10千米,我就骑自行车去了.
李明:行,根据我的经验,公交车的速度一般是你骑自行车速度的3倍,那你明天早上点从家出发,如顺利,咱俩同时到达.
相关试卷
这是一份河北省邢台市南和区2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省邢台市任泽区2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份2024~2025学年河北省邢台市襄都区邢台英华教育集团八年级(上)期中数学试卷(含答案),共10页。