所属成套资源:人教版数学九上期末考点训练专题+期末模拟预测卷(2份,原卷版+解析版)
人教版数学九上期末考点训练专题04圆(20个考点)(2份,原卷版+解析版)
展开
这是一份人教版数学九上期末考点训练专题04圆(20个考点)(2份,原卷版+解析版),文件包含人教版数学九上期末考点训练专题04圆20个考点原卷版doc、人教版数学九上期末考点训练专题04圆20个考点解析版doc等2份试卷配套教学资源,其中试卷共85页, 欢迎下载使用。
一.圆的认识
(1)圆的定义
定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.
定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.
(2)与圆有关的概念
弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.
连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.
(3)圆的基本性质:①轴对称性.②中心对称性.
二.垂径定理
(1)垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
(2)垂径定理的推论
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
三.垂径定理的应用
垂径定理的应用很广泛,常见的有:
(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.
这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.
四.圆心角、弧、弦的关系
(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.
(3)正确理解和使用圆心角、弧、弦三者的关系
三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.
(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.
五.圆周角定理
(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.
注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.
(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.
(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.
六.圆内接四边形的性质
(1)圆内接四边形的性质:
①圆内接四边形的对角互补.
②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).
(2)圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.
七.点与圆的位置关系
(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:
①点P在圆外⇔d>r
②点P在圆上⇔d=r
①点P在圆内⇔d<r
(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.
(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.
八.确定圆的条件
不在同一直线上的三点确定一个圆.
注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.
九.三角形的外接圆与外心
(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.
(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.
(3)概念说明:
①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.
②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.
③找一个三角形的外心,就是找一个三角形的三条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.
十.直线与圆的位置关系
(1)直线和圆的三种位置关系:
①相离:一条直线和圆没有公共点.
②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.
③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.
(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.
①直线l和⊙O相交⇔d<r
②直线l和⊙O相切⇔d=r
③直线l和⊙O相离⇔d>r.
十一.切线的性质
(1)切线的性质
①圆的切线垂直于经过切点的半径.
②经过圆心且垂直于切线的直线必经过切点.
③经过切点且垂直于切线的直线必经过圆心.
(2)切线的性质可总结如下:
如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.
(3)切线性质的运用
由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.
十二.切线的判定
(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.
(2)在应用判定定理时注意:
①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.
②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.
③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.
十三.切线的判定与性质
(1)切线的性质
①圆的切线垂直于经过切点的半径.
②经过圆心且垂直于切线的直线必经过切点.
③经过切点且垂直于切线的直线必经过圆心.
(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.
(3)常见的辅助线的:
①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;
②有切线时,常常“遇到切点连圆心得半径”.
十四.切线长定理
(1)圆的切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.
(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.
(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.
(4)切线长定理包含着一些隐含结论:
①垂直关系三处;
②全等关系三对;
③弧相等关系两对,在一些证明求解问题中经常用到.
十五.三角形的内切圆与内心
(1)内切圆的有关概念:
与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.
(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.
(3)三角形内心的性质:
三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
十六.正多边形和圆
(1)正多边形与圆的关系
把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.
(2)正多边形的有关概念
①中心:正多边形的外接圆的圆心叫做正多边形的中心.
②正多边形的半径:外接圆的半径叫做正多边形的半径.
③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.
④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.
十七.弧长的计算
(1)圆周长公式:C=2πR
(2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R)
①在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.
②若圆心角的单位不全是度,则需要先化为度后再计算弧长.
③题设未标明精确度的,可以将弧长用π表示.
④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.
十八.扇形面积的计算
(1)圆面积公式:S=πr2
(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.
(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则
S扇形=πR2或S扇形=lR(其中l为扇形的弧长)
(4)求阴影面积常用的方法:
①直接用公式法;
②和差法;
③割补法.
(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.
十九.圆锥的计算
(1)连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高.
(2)圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
(3)圆锥的侧面积:S侧=•2πr•l=πrl.
(4)圆锥的全面积:S全=S底+S侧=πr2+πrl
(5)圆锥的体积=×底面积×高
注意:①圆锥的母线与展开后所得扇形的半径相等.
②圆锥的底面周长与展开后所得扇形的弧长相等.
二十.圆柱的计算
(1)圆柱的母线(高)等于展开后所得矩形的宽,圆柱的底面周长等于矩形的长.
(2)圆柱的侧面积=底面圆的周长×高
(3)圆柱的表面积=上下底面面积+侧面积
(4)圆柱的体积=底面积×高.
【专题过关】
一.圆的认识(共3小题)
1.(2022•南山区校级模拟)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是( )
A.学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”
B.车轮做成圆形,应用了“圆是中心对称图形”
C.射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”
D.地板砖可以做成矩形,应用了“矩形对边相等”
2.(2022•潮安区模拟)如图,在△ABC中,∠C=90°,AB=10.若以点C为圆心,CA长为半径的圆恰好经过AB的中点D,则⊙C的半径为( )
A.B.8C.6D.5
3.(2022春•广饶县期末)画圆时圆规两脚间可叉开的距离是圆的( )
A.直径B.半径C.周长D.面积
二.垂径定理(共2小题)
4.(2022•香坊区校级模拟)如图,在⊙O中,OD⊥AB于点D,AD的长为3cm,则弦AB的长为( )
A.4cmB.6cmC.8cmD.10cm
5.(2021秋•肇源县校级期中)已知:如图,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,则CD的长为( )
A.4B.4C.3D.5
三.垂径定理的应用(共2小题)
6.(2022•宣州区二模)如图所示的是一圆弧形拱门,其中路面AB=2m,拱高CD=3m,则该拱门的半径为( )
A.B.2mC.D.3m
7.(2022•白云区二模)往圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,水的最大深度为16cm,则圆柱形容器的截面直径为( )cm.
A.10B.14C.26D.52
四.圆心角、弧、弦的关系(共2小题)
8.(2022•武汉模拟)如图,在扇形OAB中,点C为弧AB的中点,延长AC交OB的延长线于点D,连接BC,若BD=4,CD=5,则的值为( )
A.B.C.D.
9.(2022•南岗区校级模拟)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径为 .
五.圆周角定理(共2小题)
10.(2022•邯郸二模)在一次海事活动中,⊙O所在区域是活动区域,其中弦AB与优弧AB所围成的区域是声呐需要探测的区域.现在A处安装一台声呐设备,其探测区域如图1阴影所示,再在B处安装一台同型号声呐设备,恰好能完成所有区域的探测,如图2阴影所示.
如图3,现将声呐设备放置位置改为圆O上D、E、F点,设计三个方案:
①在D点放两台该型号的声呐设备
②在D点、E点分别放一台该型号的声呐设备
③在F点放两台该型号的声呐设备
若能完成所有区域的探测,则正确的方案是( )
A.①③B.①②③C.②③D.①②
11.(2022•杏花岭区校级模拟)如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=15°,则∠BDC=( )
A.85°B.75°C.70°D.65°
六.圆内接四边形的性质(共2小题)
12.(2022•南岗区校级模拟)如图,四边形ABCD是⊙O的内接四边形,连接AO、OC,∠ABC=70°,AO∥CD,则∠OCD的度数为( )
A.40°B.50°C.60°D.70°
13.(2022•牡丹江二模)如图,四边形ABCD内接于⊙O,DE是⊙O的直径,连接BD.若∠BCD=2∠BAD,则∠BDE的度数是( )
A.25°B.30°C.32.5°D.35°
七.点与圆的位置关系(共2小题)
14.(2022•汉阳区校级模拟)如图,将两个正方形如图放置(B,C,E共线,D,C,G共线),若AB=3,EF=2,点O在线段BC上,以OF为半径作⊙O,点A,点F都在⊙O上,则OD的长是( )
A.4B.C.D.
15.(2022•蓬江区一模)如图,AB是半圆O的直径,点C在半圆O上,OA=10,BC=16,D是弧AC上一个动点,连接BD,过点C作CM⊥BD,连接AM,在点D移动的过程中,AM的最小值为( )
A.B.C.D.
八.确定圆的条件(共2小题)
16.(2021秋•日喀则市月考)下列说法正确的是( )
A.弧长相等的弧是等弧
B.直径是最长的弦
C.三点确定一个圆
D.相等的圆心角所对的弦相等
17.(2021秋•龙凤区期末)小明不慎把家里的圆形镜子打碎了,其中四块碎片如图所示,为了配到与原来大小一样的圆形镜子,小明带到商店去的一块碎片应该是( )
A.第一块B.第二块C.第三块D.第四块
九.三角形的外接圆与外心(共3小题)
18.(2022•蜀山区校级三模)在锐角△ABC中,∠ACB=60°,∠BAC、∠ABC的角平分线AD、BE交于点M,则下列结论中错误的是( )
A.∠AMB=120°
B.ME=MD
C.AE+BD=AB
D.点M关于AC的对称点一定在△ABC的外接圆上
19.(2022•兴庆区校级三模)如图,⊙O外接于△ABC,延长B0交⊙O于点D,过点C作CE⊥BD交BD于点E.
(1)求证:∠BAC=∠BCE.
(2)若∠BAC=60°,BC=2,求⊙O的半径.
20.(2022•宜阳县二模)如图,点P是等边三角形ABC中AC边上的动点(0°<∠ABP<30°),作△BPC的外接圆交AB于点D.点E是圆上一点,且,连结DE交BP于点F.
(1)求证:∠ADE=∠BEC;
(2)当点P运动时,∠BFD的度数是否变化?若变化,请说明理由;若不变,求∠BFD的度数.
一十.直线与圆的位置关系(共2小题)
21.(2022•金山区二模)在直角坐标系中,点P的坐标是(2,),圆P的半径为2,下列说法正确的是( )
A.圆P与x轴有一个公共点,与y轴有两个公共点
B.圆P与x轴有两个公共点,与y轴有一个公共点
C.圆P与x轴、y轴都有两个公共点
D.圆P与x轴、y轴都没有公共点
22.(2022•雨花区校级二模)如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E是AC的中点,连接DE、CD.
(1)求证:CD⊥AB;
(2)判断DE与⊙O的位置关系,并说明理由;
(3)设CD与OE的交点为F,若AB=10,BC=6,求OF的长.
一十一.切线的性质(共2小题)
23.(2022春•沙坪坝区校级期中)如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,D是⊙O上一点,连接BD,CD,∠BDC=30°,延长AB至点F,使得BF=AB,连接OF,过点B作BG⊥OF于点G,BG=2,则OC的长为( )
A.B.C.D.2
24.(2022•南岸区校级模拟)如图,AB是圆O的直径,PQ切圆O于点E,AC⊥PQ于点C,AC交圆O于点D,若OA=5,EC=4,则AD的长为( )
A.4B.5C.6D.8
一十二.切线的判定(共2小题)
25.(2022•安国市一模)如图,在矩形ABCD中,AB=10,AD=8,以CD为直径作⊙O.将矩形ABCD绕点C旋转得到矩形A1B1CD1,使A1B1与⊙O相切于点E,CB1与⊙O相交于点F,则CF的长是( )
A.3B.4C.6D.8
26.(2022•思明区校级二模)定义:如果三角形三边的长a、b、c满足=b,那么我们就把这样的三角形叫做“匀称三角形”.如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.
(1)已知“匀称三角形”的两边长分别为4和6,则第三边长为 .
(2)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DF⊥AC,垂足为F,交AB的延长线于E,求证:EF是⊙O的切线.
一十三.切线的判定与性质(共2小题)
27.(2022•思明区校级二模)如图,四边形ABCD是⊙O的内接四边形,AC是⊙O直径,BE∥AD交DC延长线于点E,若BC平分∠ACE.
(1)求证:BE是⊙O的切线;
(2)若BE=3,CD=2,求⊙O的半径.
28.(2022•五华区校级模拟)如图,AB为⊙O直径,C,D为⊙O上的两点,且∠ACD=2∠A,CE⊥DB交DB的延长线于点E.
(1)求证:CE是⊙O的切线;
(2)若DE=2CE,AC=4,求⊙O的半径.
一十四.切线长定理(共1小题)
29.(2022•拱墅区模拟)如图,AB、AC、BD是⊙O的切线,切点分别是P、C、D.若AB=10,AC=6,则BD的长是( )
A.3B.4C.5D.6
一十五.三角形的内切圆与内心(共2小题)
30.(2022•路南区三模)如图,点O为△ABC的内心,∠B=60°,BC≠AB,点M,N分别为AB,BC上的点,且OM=ON.甲、乙、丙三人有如下判断:甲:∠MON=120°;乙:四边形OMBN的面积为定值;丙:当MN⊥BC时,△MON的周长有最小值.则下列说法正确的是( )
A.只有甲正确B.只有乙错误
C.乙、丙都正确D.只有丙错误
31.(2022•景县校级模拟)如图,已知在Rt△ABC中,∠B=90°,AB=6,AC=10,点P是Rt△ABC的内心.
(1)点P到边AB的距离为 ;
(2)Q是Rt△ABC的外心,连接PQ,则PQ的长为 .
一十六.正多边形和圆(共2小题)
32.(2022•安顺)如图,在平面直角坐标系中,将边长为2的正六边形OABCDE绕点O顺时针旋转n个45°,得到正六边形OAnBn∁nDnEn,当n=2022时,正六边形OAnBn∁nDnEn的顶点Dn的坐标是( )
A.(﹣,﹣3)B.(﹣3,﹣)C.(3,﹣)D.(﹣,3)
33.(2022•兴庆区校级三模)如图,五边形ABCDE是⊙O的内接正五边形,则∠EBC的度数为 .
一十七.弧长的计算(共2小题)
34.(2022•绿园区校级模拟)如图,线段AB=2.以AB为直径作半圆,再分别以点A、B为圆心,以AB的长为半径画弧,两弧相交于点C.则图中阴影部分的周长为 .
35.(2022•嵩县模拟)如图,D是以AB为直径的半圆O的中点,=2,E是直径AB上一个动点,已知AB=2cm,则图中阴影部分周长的最小值是 cm.
一十八.扇形面积的计算(共2小题)
36.(2022•山西模拟)如图,在△ABC中,AB=AC=4,∠BAC=120°,AO是△ABC的中线.以O为圆心,OA长为半径作半圆,分别交AB,AC于点D,E,交BC于点F,G.则图中阴影部分的面积为( )
A.2﹣πB.C.4﹣πD.π
37.(2022•鞍山)如图,在矩形ABCD中,AB=2,BC=,以点B为圆心,BA长为半径画弧,交CD于点E,连接BE,则扇形BAE的面积为( )
A.B.C.D.
一十九.圆锥的计算(共2小题)
38.(2022•五华区校级模拟)如图,在正方形ABCD中,以点A为圆心,AD为半径,画圆弧DB得到扇形DAB(阴影部分),且扇形DAB的面积为4π.若扇形DAB正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径为( )
A.1B.2C.3D.4
39.(2022•天心区校级三模)已知圆锥的高为12,母线长为13,则圆锥的侧面积为 .
二十.圆柱的计算(共2小题)
40.(2022•绵阳)如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是圆柱(单位:mm).电镀时,如果每平方米用锌0.1千克,电镀1000个这样的锚标浮筒,需要多少千克锌?(π的值取3.14)( )
A.282.6B.282600000C.357.96D.357960000
41.(2022春•东平县期中)如图(1)所示的瓶子中盛满了水,如果将这个瓶子中的水全部倒入图(2)所示的杯子中,那么一共需要 个这样的杯子?(单位:cm)
相关试卷
这是一份人教版数学九上期末考点训练专题09投影与视图(7个考点)(2份,原卷版+解析版),文件包含人教版数学九上期末考点训练专题09投影与视图7个考点原卷版doc、人教版数学九上期末考点训练专题09投影与视图7个考点解析版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
这是一份人教版数学九上期末考点训练专题07相似(13个考点)(2份,原卷版+解析版),文件包含人教版数学九上期末考点训练专题07相似13个考点原卷版doc、人教版数学九上期末考点训练专题07相似13个考点解析版doc等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。
这是一份人教版数学九上期末考点训练专题05概率初步(9个考点)(2份,原卷版+解析版),文件包含人教版数学九上期末考点训练专题05概率初步9个考点原卷版doc、人教版数学九上期末考点训练专题05概率初步9个考点解析版doc等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。