所属成套资源:中考数学二轮复习压轴题培优训练专题(2份,原卷版+解析版)
中考数学二轮复习压轴题培优训练专题7弦图与垂直模型(2份,原卷版+解析版)
展开
这是一份中考数学二轮复习压轴题培优训练专题7弦图与垂直模型(2份,原卷版+解析版),文件包含中考数学二轮复习压轴题培优训练专题7弦图与垂直模型原卷版doc、中考数学二轮复习压轴题培优训练专题7弦图与垂直模型解析版doc等2份试卷配套教学资源,其中试卷共88页, 欢迎下载使用。
模型1:垂直模型
如图:∠D=∠BCA=∠E=90°,BC=AC.,结论:Rt△BCD≌Rt△CAE.
模型分析
说到三垂直模型,不得不说一下弦图,弦图的运用在初中直角三角形中占有举足轻重的地位,很多利用垂直求角,勾股定理求边长,相似求边长都会用到从弦图支离出来的一部分几何图形去求解.图①和图②就是我们经常会见到的两种弦图.
三垂直图形变形如图③、图④,这也是由弦图演变而来的.
模型2:弦图模型
经典例题
【例1】.(2021·全国·八年级专题练习)如图1,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上(不与点A,O重合)的一个动点,过点P作PE⊥PB且PE交边CD于点E.
(1)求证:PE=PB;
(2)如图2,若正方形ABCD的边长为2,过点E作EF⊥AC于点F,在点P运动的过程中,PF的长度是否发生变化?若不变,试求出这个不变的值;若变化,请说明理由;
(3)用等式表示线段PC,PA,CE之间的数量关系.
【例2】(2021·黑龙江·哈尔滨市第四十九中学校九年级阶段练习)正方形ABCD中,点E、F在BC、CD上,且BE=CF,AE与BF交于点G.
(1)如图1,求证AE⊥BF;
(2)如图2,在GF上截取GM=GB,∠MAD的平分线交CD于点H,交BF于点N,连接CN,求证:AN+CN=BN;
【例3】(2021·云南曲靖·八年级期末)如图1,在正方形中,为上一点,连接,过点作于点,交于点.
(1)求证:;
(2)如图2,连接、,点、、、分别是、、、的中点,试判断四边形的形状,并说明理由;
(3)如图3,点、分别在正方形的边、上,把正方形沿直线翻折,使得的对应边恰好经过点,过点作于点,若,正方形的边长为3,求线段的长.
【例4】(2021·河南商丘·八年级期中)在平面直角坐标系中,点的坐标为,点为轴正半轴上的一个动点,以为直角顶点,为直角边在第一象限作等腰Rt.
(1)如图1,若,则点的坐标为______;
(2)如图2,若,点为延长线上一点,以为直角顶点,为直角边在第一象限作等腰Rt,连接,求证:;
(3)如图3,以为直角顶点,为直角边在第三象限作等腰Rt.连接,交轴于点,求线段的长度.
【例5】.(2021·黑龙江·哈尔滨市风华中学校九年级阶段练习)如图1,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF⊥DE,垂足为点F,BF与CD相交于点G.
(1)求证:△BCG≌△DCE;
(2)如图2,连接BD,若BE=4,DG=2,求tan∠DBG的值.
培优训练
一、解答题
1.(2022·江苏·八年级课时练习)如图1,在中,,,直线经过点,且于,于.
(1)由图1,证明:;
(2)当直线绕点旋转到图2的位置时,请猜想出,,的等量关系并说明理由;
(3)当直线绕点旋转到图3的位置时,试问,,又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).
2.(2022·全国·八年级专题练习)如图所示,中,,,点为上一点,过点作直线的垂线,垂足为,连接,过点作的垂线交于点.
(1)如图1,求的度数;
(2)如图2,连接,且,求证:;
(3)如图3,在(2)的条件下,为上一点,连接,若,,求的长.
3.(2020·北京市第十三中学九年级期中)已知:Rt△ABC中,∠ACB=90°,AC=BC.
(1)如图1,点D是BC边上一点(不与点B,C重合),连接AD,过点B作BE⊥AD,交AD的延长线于点E,连接CE.
①若∠BAD=α,求∠DBE的大小(用含α的式子表示);
②用等式表示线段EA,EB和EC之间的数量关系,并证明.
(2)如图2,点D在线段BC的延长线上时,连接AD,过点B作BE⊥AD,垂足E在线段AD上,连接CE.
①依题意补全图2;
②直接写出线段EA,EB和EC之间的数量关系.
4.(2021·四川省成都市七中育才学校七年级期中)已知:中,,,为直线上一动点,连接,在直线右侧作,且.
(1)如图1,当点在线段上时,过点作于,连接.求证:;
(2)如图2,当点在线段的延长线上时,连接交的延长线于点.求证:;
(3)当点在直线上时,连接交直线于,若,请求出的值.
5.(2022·江苏·八年级课时练习)在中,,,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.
(1)如果点D在线段BC上运动,如图1:求证:
(2)如果点D在线段BC上运动,请写出AC与CE的位置关系.通过观察、交流,小明形成了以下的解题思路:过点E作交直线BC于F,如图2所示,通过证明,可推证等腰直角三角形,从而得出AC与CE的位置关系,请你写出证明过程.
(3)如果点D在线段CB的延长线上运动,利用图3画图分析,(2)中的结论是否仍然成若成立,请证明;若不成立,请说明理由.
6.(2021·黑龙江·哈尔滨市第四十七中学八年级开学考试)如图,已知中,,,分别过、向过的直线作垂线,垂足分别为 .
(1)如图1,过的直线与斜边不相交时,直接写出线段、、的数量关系是______;
(2)如图2,过的直线与斜边相交时,探究线段、、的数量关系并加以证明;
(3)在(2)的条件下,如图3,直线交于点,延长交于点,连接、、,若,,,四边形的面积是90,求的面积.
7.(2021·江苏泰州·八年级期末)如图,正方形ABCD边长为4,点G在边AD上(不与点A、D重合),BG的垂直平分线分别交AB、CD于E、F两点,连接EG.
(1)当AG=1时,求EG的长;
(2)当AG的值等于 时,BE=8-2DF;
(3)过G点作GM⊥EG交CD于M
①求证:GB平分∠AGM;
②设AG=x,CM=y,试说明的值为定值.
8.(2021·全国·八年级专题练习)已知,如图,在Rt△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF,当点D在线段BC的反向延长线上,且点A,F分别在直线BC的两侧时.
(1)求证:△ABD≌△ACF;
(2)若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC,求OC的长度.
9.(2021·安徽安庆·八年级期末)如图1,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°(即∠EBE'=90°),得到△CBE′(点A的对应点为点C)延长AE交CE于点F,连接DE.
(1)试判断四边形BE′FE的形状,并说明理由.
(2)如图2,若DA=DE,请猜想线段CF于FE'的数量关系并加以证明.
(3)如图1,若AB=,CF=3,请直接写出DE的长.
10.(2021·湖北鄂州·八年级期末)如图,四边形是正方形,点是线段的延长线上一点,点是线段上一点,连接,以点为直角顶点作交的角平分线于,过点作交于,连接,,.
(1)求证:.
(2)求证:.
(3)若,,求的长.
11.(2022·广东·塘厦初中八年级期中)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
(1)如图,求证:矩形DEFG是正方形;
(2)若AB=4,CE=2,求CG的长度;
(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.
12.(2021·山西·八年级期末)综合与实践:如图1,在正方形中,连接对角线,点O是的中点,点E是线段上任意一点(不与点A,O重合),连接,.过点E作交直线于点F.
(1)试猜想线段与的数量关系,并说明理由;
(2)试猜想线段之间的数量关系,并说明理由;
(3)如图2,当E在线段上时(不与点C,O重合),交延长线于点F,保持其余条件不变,直接写出线段之间的数量关系.
13.(2021·全国·八年级专题练习)如图1,已知正方形和正方形,点在同一直线上,连接,,与相交于点.
(1)求证:.
(2)如图2,是边上的一点,连接交于点,且.
①求证:;
②若,直接写出的值.
14.(2021·全国·八年级专题练习)探究证明:
(1)如图1,正方形ABCD中,点M、N分别在边BC、CD上,AM⊥BN.求证:BN=AM;
(2)如图2,矩形ABCD中,点M在BC上,EF⊥AM,EF分别交AB、CD于点E、F.求证:;
(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M、N分别在边BC、AB上,求的值.
15.(2021·全国·八年级专题练习)如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE的关系(直接写出答案,不用证明);
(2)将正方形DEFG绕点D逆时针方向旋转α (0°<α≤60°),判断(1)中的结论是否仍然成立?请利用图②证明你的结论;
(3)若BC=DE=4,当α等于多少度时,AE最大?并求出此时AF的值.
16.(2021·全国·八年级专题练习)四边形是边长为的正方形,点在边所在的直线上,连接,以为直角顶点在右侧作等腰,连接
(1)如图1,当点在点左侧,且三点共线时,______;
(2)如图2,当点在点右侧,且时,求的长:
(3)若点在边所在直线上,且,求的长.
17.(2021·安徽黄山·八年级期中)在正方形中,点是边上的一点,点是直线上一动点,于,交直线于点.
(1)当点运动到与点重合时(如图1),线段与的数量关系是________.
(2)若点运动到如图2所示的位置时,(1)探究的结论还成立吗?如果成立,请给出证明:如果不成立,请说明理由.
(3)如图3,将边长为的正方形折叠,使得点落在边的中点处,折痕为,点、分别在边、上,请直接写出折痕的长.
18.(2021·全国·八年级专题练习)如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF与DE相交于点M,且∠BAF=∠ADE.
(1)如图1,求证:AF⊥DE;
(2)如图2,AC与BD相交于点O,AC交DE于点G,BD交AF于点H,连接GH,试探究直线GH与AB的位置关系,并说明理由;
(3)在(1)(2)的基础上,若AF平分∠BAC,且BDE的面积为4+2,求正方形ABCD的面积.
19.(2021·全国·八年级专题练习)如图,在正方形中,对角线、相交于点,、分别在、上,且,连接、,的延长线交于点.
(1)求证:;
(2)求证:.
20.(2021·黑龙江·哈尔滨市虹桥初级中学校模拟预测)直线与x轴交于A,与y轴交于C点,直线BC的解析式为,与x轴交于B.
(1)如图1,求点A的横坐标;
(2)如图2,D为BC延长线上一点,过D作x轴垂线于点E,连接CE,若,设的面积为S,求S与k的函数关系式;
(3)如图3,在(2)的条件下,连接OD交AC于点F,将沿CF翻折得到,直线FG交CE于点K,若,求点K的坐标.
相关试卷
这是一份专题7弦图与垂直模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(教师版含解析),共69页。
这是一份专题07 弦图与垂直模型-中考数学压轴大题之经典模型培优案(全国通用),文件包含专题7弦图与垂直模型-中考数学压轴大题之经典模型培优案全国通用解析版docx、专题7弦图与垂直模型-中考数学压轴大题之经典模型培优案全国通用原卷版docx等2份试卷配套教学资源,其中试卷共82页, 欢迎下载使用。
这是一份2023年中考数学二轮复习压轴大题培优学案专题7弦图与垂直模型(教师版),共74页。