开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    福建省三明市中考数学试卷(含解析版)

    福建省三明市中考数学试卷(含解析版)第1页
    福建省三明市中考数学试卷(含解析版)第2页
    福建省三明市中考数学试卷(含解析版)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省三明市中考数学试卷(含解析版)

    展开

    这是一份福建省三明市中考数学试卷(含解析版),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    1.(4分)(2015•福建)下列各数中,绝对值最大的数是( )
    2.(4分)(2015•福建)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为( )
    3.(4分)(2015•福建)如图是由4个完全相同的小正方形组成的几何体,这个几何体的主视图是( )
    A. B. C. D.
    4.(4分)(2015•福建)下列计算正确的是( )
    5.(4分)(2015•福建)在九(1)班的一次体育测试中,某小组7位女生的一分钟跳绳次数分别是:162,167,158,165,175,142,167,这组数据的中位数是( )
    6.(4分)(2015•福建)如图,在▱ABCD中,O是对角线AC,BD的交点,下列结论错误的是( )
    7.(4分)(2015•福建)在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,下列事件中,不可能事件是( )
    8.(4分)(2015•福建)在半径为6的⊙O中,60°圆心角所对的弧长是( )
    9.(4分)(2015•福建)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是( )
    10.(4分)(2015•福建)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为( )

    二、填空题(共6题,每题4分,满分24分)
    11.(4分)(2015•福建)化简:= .
    12.(4分)(2015•福建)某班数学老师想了解学生对数学的喜欢程度,对全班50名学生进行调查,根据调查结果绘制了扇形统计图(如图所示),其中A表示“很喜欢”,B表示“一般”,C表示“不喜欢”,则该班“很喜欢”数学的学生有 人.
    13.(4分)(2015•福建)在一次函数y=kx+3中,y的值随着x值的增大而增大,请你写出符合条件的k的一个值: .
    14.(4分)(2015•福建)如图,正五边形ABCDE内接于⊙O,则∠CAD= 度.
    15.(4分)(2015•福建)观察下列图形的构成规律,依照此规律,第10个图形中共有 个“•”.
    16.(4分)(2015•福建)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是 .

    三、解答题(共9题,满分86分)
    17.(8分)(2015•福建)先化简,再求值:(x﹣1)2+x(x+2),其中x=.

    18.(8分)(2015•福建)解不等式组,并把解集在数轴上表示出来.

    19.(8分)(2015•福建)如图,一条河的两岸l1,l2互相平行,在一次综合实践活动中,小颖去测量这条河的宽度,先在对岸l1上选取一个点A,然后在河岸l2时选择点B,使得AB与河岸垂直,接着沿河岸l2走到点C处,测得BC=60米,∠BCA=62°,请你帮小颖算出河宽AB(结果精确到1米).(参考数据:sin62°≈0.88,cs62°≈0.47,tan62°≈1.88)

    20.(8分)(2015•福建)某校开展校园“美德少年”评选活动,共有“助人为乐”,“自强自立”、“孝老爱亲”,“诚实守信”四种类别,每位同学只能参评其中一类,评选后,把最终入选的20位校园“美德少年”分类统计,制作了如下统计表,后来发现,统计表中前两行的数据都是正确的,后两行的数据中有一个是错误的.
    根据以上信息,解答下列问题:
    (1)统计表中的a= ,b ;
    (2)统计表后两行错误的数据是 ,该数据的正确值是 ;
    (3)校园小记者决定从A,B,C三位“自强自立美德少年”中随机采访两位,用画树状图或列表的方法,求A,B都被采访到的概率.

    21.(8分)(2015•福建)某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:
    当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?

    22.(10分)(2015•福建)已知二次函数y=﹣x2+2x+m.
    (1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
    (2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.

    23.(10分)(2015•福建)已知:AB是⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ.
    (1)如图①,线段PQ所在的直线与⊙O相切,求线段PQ的长;
    (2)如图②,线段PQ与⊙O还有一个公共点C,且PC=CQ,连接OQ,AC交于点D.
    ①判断OQ与AC的位置关系,并说明理由;
    ②求线段PQ的长.

    24.(12分)(2015•福建)如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C在点D的左侧).
    (1)求抛物线的解析式;
    (2)求点O到直线AB的距离;
    (3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB相似时,请你直接写出点M的坐标.

    25.(14分)(2015•福建)在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
    (1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
    (2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;
    (3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.


    福建省三明市中考数学试卷
    参考答案与试题解析
    一、选择题(共10题,每题4分,满分40分,每题只有一个正确选项)
    1.(4分)(2015•福建)下列各数中,绝对值最大的数是( )
    考点: 有理数大小比较;绝对值.
    分析: 根据绝对值的概念,可得出距离原点越远,绝对值越大,可直接得出答案.
    解答: 解:|5|=5,|﹣3|=3,|0|=0,|﹣2|=2,
    ∵5>3>2>0,
    ∴绝对值最大的数是5,
    故选:A.
    点评: 本题考查了实数的大小比较,以及绝对值的概念,解决本题的关键是求出各数的绝对值.

    2.(4分)(2015•福建)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为( )
    考点: 科学记数法—表示较大的数.
    分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    解答: 解:100800=1.008×105.
    故故选C.
    点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    3.(4分)(2015•福建)如图是由4个完全相同的小正方形组成的几何体,这个几何体的主视图是( )
    A. B. C. D.
    考点: 简单组合体的三视图.
    分析: 主视图是从正面看到的图形,是这个几何体从正面照射的正投影,据此求解.
    解答: 解:观察该几何体发现:其主视图的第一层有两个正方形,上面有一个正方形,且位于左侧,
    故选D.
    点评: 本题考查了简单组合体的三视图,解题的关键是了解主视图的定义,难度不大.

    4.(4分)(2015•福建)下列计算正确的是( )
    考点: 负整数指数幂;有理数的乘方;算术平方根;零指数幂.菁优网版权所
    分析: A:根据有理数的乘方的运算方法判断即可.
    B:根据零指数幂的运算方法判断即可.
    C:根据负整数指数幂的运算方法判断即可.
    D:根据算术平方根的含义和求法判断即可.
    解答: 解:∵22=4,
    ∴选项A正确;
    ∵20=1,
    ∴选项B不正确;
    ∵2﹣1=,
    ∴选项C不正确;
    ∵,
    ∴选项D不正确.
    故选:A.
    点评: (1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.
    (2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.
    (3)此题还考查了有理数的乘方的运算方法,以及算术平方根的含义和求法,要熟练掌握.

    5.(4分)(2015•福建)在九(1)班的一次体育测试中,某小组7位女生的一分钟跳绳次数分别是:162,167,158,165,175,142,167,这组数据的中位数是( )
    考点: 中位数.
    分析: 找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    解答: 解:这组数据按照从小到大的顺序排列为:142,158,162,165,167,167,175,第四个数为165,
    则中位数为:165.
    故选C.
    点评: 本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.

    6.(4分)(2015•福建)如图,在▱ABCD中,O是对角线AC,BD的交点,下列结论错误的是( )
    考点: 平行四边形的性质.
    分析: 根据平行四边形的性质推出即可.
    解答: 解:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,OA=OC,
    但是AC和BD不一定相等,
    故选C.
    点评: 本题考查了平行四边形的性质的应用,能熟记平行四边形的性质是解此题的关键,注意:平行四边形的对边相等且平行,平行四边形的对角线互相平分.

    7.(4分)(2015•福建)在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,下列事件中,不可能事件是( )
    考点: 随机事件.
    分析: 根据必然事件、不可能事件、随机事件的概念可区别各类事件.
    解答: 解:A、只有一个白球,故A是不可能事件,故A正确;
    B、摸出的2个球有一个是白球是随机事件,故B错误;
    C、摸出的2个球都是黑球是随机事件,故C错误;
    D、摸出的2个球有一个黑球是随机事件,故D错误;
    故选:A.
    点评: 本题考查了可能性的大小,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

    8.(4分)(2015•福建)在半径为6的⊙O中,60°圆心角所对的弧长是( )
    考点: 弧长的计算.
    分析: 根据弧长的计算公式l=计算即可.
    解答: 解:l===2π.
    故选:B.
    点评: 本题考查的是弧长的计算,掌握弧长的计算公式:l=是解题的关键.

    9.(4分)(2015•福建)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是( )
    考点: 作图—基本作图;线段垂直平分线的性质;直角三角形斜边上的中线.版
    分析: 由题意可知:MN为AB的垂直平分线,可以得出AD=BD;CD为直角三角形ABC斜边上的中线,得出CD=BD;利用三角形的内角和得出∠A=∠BED;因为∠A≠60°,得不出AC=AD,无法得出EC=ED,则∠ECD=∠EDC不成立;由此选择答案即可.
    解答: 解:∵MN为AB的垂直平分线,
    ∴AD=BD,∠BDE=90°;
    ∵∠ACB=90°,
    ∴CD=BD;
    ∵∠A+∠B=∠B+∠BED=90°,
    ∴∠A=∠BED;
    ∵∠A≠60°,AC≠AD,
    ∴EC≠ED,
    ∴∠ECD≠∠EDC.
    故选:D.
    点评: 此题考查了线段垂直平分线的性质以及直角三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.

    10.(4分)(2015•福建)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为( )
    考点: 反比例函数图象上点的坐标特征.
    分析: 首先根据点C的坐标为(m,n),分别求出点A的坐标、点B的坐标;然后根据AO、BO所在的直线的斜率相同,求出m,n满足的关系式即可.
    解答: 解:∵点C的坐标为(m,n),
    ∴点A的纵坐标是n,横坐标是:,
    ∴点A的坐标为(,n),
    ∵点C的坐标为(m,n),
    ∴点B的横坐标是m,纵坐标是:,
    ∴点B的坐标为(m,),
    又∵,
    ∴mn=
    ∴m2n2=4,
    又∵m<0,n>0,
    ∴mn=﹣2,
    ∴n=﹣
    故选:B.
    点评: 此题主要考查了反比例函数的图象上点的坐标的特征,要熟练掌握,解答此题的关键是要明确:①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.

    二、填空题(共6题,每题4分,满分24分)
    11.(4分)(2015•福建)化简:= .
    考点: 约分.
    分析: 将分母分解因式,然后再约分、化简.
    解答: 解:原式==.
    点评: 利用分式的性质变形时必须注意所乘的(或所除的)整式不为零.
    12.(4分)(2015•福建)某班数学老师想了解学生对数学的喜欢程度,对全班50名学生进行调查,根据调查结果绘制了扇形统计图(如图所示),其中A表示“很喜欢”,B表示“一般”,C表示“不喜欢”,则该班“很喜欢”数学的学生有 18 人.
    考点: 扇形统计图.
    专题: 计算题.
    分析: 根据扇形统计图求出A占的百分比,由调查的总人数50计算即可得到结果.
    解答: 解:根据题意得:(1﹣16%﹣48%)×50=18(人),
    则该班“很喜欢”数学的学生有18人.
    故答案为:18
    点评: 此题考查了扇形统计图,弄清图形中的数据是解本题的关键.

    13.(4分)(2015•福建)在一次函数y=kx+3中,y的值随着x值的增大而增大,请你写出符合条件的k的一个值: 2 .
    考点: 一次函数的性质.
    专题: 开放型.
    分析: 直接根据一次函数的性质进行解答即可.
    解答: 解:当在一次函数y=kx+3中,y的值随着x值的增大而增大时,k>0,则符合条件的k的值可以是1,2,3,4,5…
    故答案是:2.
    点评: 本题考查了一次函数的性质.在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.

    14.(4分)(2015•福建)如图,正五边形ABCDE内接于⊙O,则∠CAD= 36 度.
    考点: 圆周角定理;正多边形和圆.
    分析: 圆内接正五边形ABCDE的顶点把圆五等分,即可求得五条弧的度数,根据圆周角的度数等于所对的弧的度数的一半即可求解.
    解答: 解:∵五边形ABCDE是正五边形,
    ∴=====72°,
    ∴∠ADB=×72°=36°.
    故答案为36.
    点评: 本题考查了正多边形的计算,理解正五边形的顶点是圆的五等分点是关键.

    15.(4分)(2015•福建)观察下列图形的构成规律,依照此规律,第10个图形中共有 111 个“•”.
    考点: 规律型:图形的变化类.
    分析: 观察图形可知前4个图形中分别有:3,7,13,21个“•”,所以可得规律为:第n个图形中共有[n(n+1)+1]个“•”.再将n=10代入计算即可.
    解答: 解:由图形可知:
    n=1时,“•”的个数为:1×2+1=3,
    n=2时,“•”的个数为:2×3+1=7,
    n=3时,“•”的个数为:3×4+1=13,
    n=4时,“•”的个数为:4×5+1=21,
    所以n=n时,“•”的个数为:n(n+1)+1,
    n=10时,“•”的个数为:10×11+1=111.
    故答案为111.
    点评: 本题主要考查了规律型:图形的变化类,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律,难度适中.

    16.(4分)(2015•福建)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是 1 .
    考点: 翻折变换(折叠问题).
    分析: 首先由勾股定理求得AC的长度,由轴对称的性质可知BC=CB′=3,当B′A有最小值时,即AB′+CB′有最小值,由两点之间线段最短可知当A、B′、C三点在一条直线上时,AB′有最小值.
    解答: 解:在Rt△ABC中,由勾股定理可知:AC===4,
    由轴对称的性质可知:BC=CB′=3,
    ∵CB′长度固定不变,
    ∴当AB′+CB′有最小值时,AB′的长度有最小值.
    根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,
    ∴AB′=AC﹣B′C=4﹣3=1.
    故答案为:1.
    点评: 本题主要考查的是轴对称的性质、勾股定理和线段的性质,将求B′A的最小值转化为求AB′+CB′的最小值是解题的关键.

    三、解答题(共9题,满分86分)
    17.(8分)(2015•福建)先化简,再求值:(x﹣1)2+x(x+2),其中x=.
    考点: 整式的混合运算—化简求值.
    分析: 原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并得到最简结果,将x的值代入计算即可求出值.
    解答: 解:原式=x2﹣2x+1+x2+2x=2x2+1,
    当x=时,原式=4+1=5.
    点评: 此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,多项式除单项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.

    18.(8分)(2015•福建)解不等式组,并把解集在数轴上表示出来.
    考点: 解一元一次不等式组;在数轴上表示不等式的解集.
    分析: 先求出不等式组中每一个不等式的解集,然后把不等式的解集表示在数轴上,再表示出它们的公共部分即可.
    解答: 解:,
    解①得:x≥﹣1,
    解②得:x<2.

    不等式组的解集是:﹣1≤x<2.
    点评: 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.

    19.(8分)(2015•福建)如图,一条河的两岸l1,l2互相平行,在一次综合实践活动中,小颖去测量这条河的宽度,先在对岸l1上选取一个点A,然后在河岸l2时选择点B,使得AB与河岸垂直,接着沿河岸l2走到点C处,测得BC=60米,∠BCA=62°,请你帮小颖算出河宽AB(结果精确到1米).(参考数据:sin62°≈0.88,cs62°≈0.47,tan62°≈1.88)
    考点: 解直角三角形的应用.
    专题: 应用题.
    分析: 在直角三角形ABC中,利用锐角三角函数定义求出AB的长即可.
    解答: 解:在Rt△ABC中,BC=60米,∠BCA=62°,
    可得tan∠BCA=,即AB=BC•tan∠BCA=60×1.88≈113(米),
    则河宽AB为113米.
    点评: 此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.

    20.(8分)(2015•福建)某校开展校园“美德少年”评选活动,共有“助人为乐”,“自强自立”、“孝老爱亲”,“诚实守信”四种类别,每位同学只能参评其中一类,评选后,把最终入选的20位校园“美德少年”分类统计,制作了如下统计表,后来发现,统计表中前两行的数据都是正确的,后两行的数据中有一个是错误的.
    根据以上信息,解答下列问题:
    (1)统计表中的a= 4 ,b 0.15 ;
    (2)统计表后两行错误的数据是 0.32 ,该数据的正确值是 0.30 ;
    (3)校园小记者决定从A,B,C三位“自强自立美德少年”中随机采访两位,用画树状图或列表的方法,求A,B都被采访到的概率.
    考点: 列表法与树状图法;频数(率)分布表.
    分析: (1)根据频率=直接求得a、b的值即可;
    (2)用频数除以样本总数看是否等于已知的频率即可;
    (3)列表将所有等可能的结果列举出来,利用概率公式求解即可.
    解答: 解:(1)由题意得:a=20×0.20=4,b=3÷20=0.15;
    (2)∵6÷20=0.3≠0.32,
    ∴最后一行数据错误,正确的值为0.30;
    (3)列表得:
    A B C
    A AB AC
    B BA BC
    C CA CB
    ∵共有6种等可能的结果,A、B都被选中的情况有2种,
    ∴P(A,B都被采访到)==.
    点评: 本题考查了频数分布表及列表或树形图求概率的知识,解题的关键是能够正确的列表将所有等可能的结果列举出来,难度不大.

    21.(8分)(2015•福建)某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:
    当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?
    考点: 二元一次方程组的应用.
    分析: 设批发的黄瓜是x千克,茄子是y千克,根据“用了145元从蔬菜批发市场批发一些黄瓜和茄子,卖完这些黄瓜和茄子共赚了90元,”列出方程组解答即可.
    解答: 解:设批发的黄瓜是x千克,茄子是y千克,由题意得
    解得
    答:这天他批发的黄瓜15千克,茄子是25千克.
    点评: 此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.

    22.(10分)(2015•福建)已知二次函数y=﹣x2+2x+m.
    (1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
    (2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.
    考点: 抛物线与x轴的交点;二次函数的性质.
    分析: (1)由二次函数的图象与x轴有两个交点,得到△=22+4m>0于是得到m>﹣1;
    (2)把点A(3,0)代入二次函数的解析式得到m=3,于是确定二次函数的解析式为:y=﹣x2+2x+3,求得B(0,3),得到直线AB的解析式为:y=﹣x+3,把对称轴方程x=1,直线y=﹣x+3即可得到结果.
    解答: 解:(1)∵二次函数的图象与x轴有两个交点,
    ∴△=22+4m>0
    ∴m>﹣1;
    (2)∵二次函数的图象过点A(3,0),
    ∴0=﹣9+6+m
    ∴m=3,
    ∴二次函数的解析式为:y=﹣x2+2x+3,
    令x=0,则y=3,
    ∴B(0,3),
    设直线AB的解析式为:y=kx+b,
    ∴,
    解得:,
    ∴直线AB的解析式为:y=﹣x+3,
    ∵抛物线y=﹣x2+2x+3,的对称轴为:x=1,
    ∴把x=1代入y=﹣x+3得y=2,
    ∴P(1,2).
    点评: 本题考查了二次函数与x轴的交点问题,求函数的解析式,知道抛物线的对称轴与直线AB的交点即为点P的坐标是解题的关键.

    23.(10分)(2015•福建)已知:AB是⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ.
    (1)如图①,线段PQ所在的直线与⊙O相切,求线段PQ的长;
    (2)如图②,线段PQ与⊙O还有一个公共点C,且PC=CQ,连接OQ,AC交于点D.
    ①判断OQ与AC的位置关系,并说明理由;
    ②求线段PQ的长.
    考点: 圆的综合题.
    分析: (1)如图①,连接OQ.利用切线的性质和勾股定理来求PQ的长度.
    (2)如图②,连接BC.利用三角形中位线的判定与性质得到BC∥OQ.根据圆周角定理推知BC⊥AC,所以,OQ⊥AC.
    (3)利用割线定理来求PQ的长度即可.
    解答: 解:(1)如图①,连接OQ.
    ∵线段PQ所在的直线与⊙O相切,点Q在⊙O上,
    ∴OQ⊥OP.
    又∵BP=OB=OQ=2,
    ∴PQ===2,即PQ=2;
    (2)OQ⊥AC.理由如下:
    如图②,连接BC.
    ∵BP=OB,
    ∴点B是OP的中点,
    又∵PC=CQ,
    ∴点C是PQ的中点,
    ∴BC是△PQO的中位线,
    ∴BC∥OQ.
    又∵AB是直径,
    ∴∠ACB=90°,即BC⊥AC,
    ∴OQ⊥AC.
    (3)如图②,PC•PQ=PB•PA,即PQ2=2×6,
    解得PQ=2.
    点评: 本题考查了圆的综合题.掌握圆周角定理,三角形中位线定理,平行线的性质,熟练利用割线定理进行几何计算.

    24.(12分)(2015•福建)如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C在点D的左侧).
    (1)求抛物线的解析式;
    (2)求点O到直线AB的距离;
    (3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB相似时,请你直接写出点M的坐标.
    考点: 二次函数综合题.
    分析: (1)根据待定系数法,可得抛物线的解析式;
    (2)根据勾股定理,可得OA2、OB2、AB2的长,根据勾股定理的逆定理,可得∠OAB的度数,根据点到直线的距离的定义,可得答案;
    (3)根据抛物线上的点满足函数解析式,可得方程②,根据相似三角形的性质,可得方程①③,根据解方程组,可得M点的坐标.
    解答: 解:(1)设抛物线的解析式为y=a(x﹣1)2﹣1,
    将B点坐标代入函数解析式,得
    (5﹣1)2a﹣1=3,
    解得a=.
    故抛物线的解析式为y=(x﹣1)2﹣1;
    (2)由勾股定理,得OA2=11+12=2,OB2=52+32=34,AB2=(5﹣1)2+(3+1)2=32,
    OA2+AB2=OB2,
    ∴∠OAB=90°,
    O到直线AB的距离是OA=;
    (3)设M(a,b),N(a,0)
    当y=0时,(x﹣1)2﹣1=0,
    解得x1=3,x2=﹣1,
    D(3,0),DN=3﹣a.
    ①当△MND∽△OAB时,=,即=,
    化简,得4b=a﹣3 ①
    M在抛物线上,得b=(a﹣1)2﹣1 ②
    联立①②,得,
    解得a1=3(不符合题意,舍),a2=﹣2,b=,
    M1(﹣2,),
    当△MND∽△BAO时,=,即=,
    化简,得b=12﹣4a ③,
    联立②③,得,
    解得a1=3(不符合题意,舍),a2=﹣17,b=12﹣4×(﹣17)=80,
    M2(﹣17,80).
    综上所述:当△DMN与△OAB相似时,点M的坐标(﹣2,),(﹣17,80).
    点评: 本题考查了二次函数综合题,(1)设成顶点式的解析式是解题关键,(2)利用了勾股定理及勾股定理的逆定理,点到直线的距离;(3)利用了相似三角形的性质,图象上的点满足函数解析式得出方程组是解题关键,要分类讨论,以防遗漏.

    25.(14分)(2015•福建)在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
    (1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
    (2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;
    (3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
    考点: 四边形综合题.
    分析: (1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;
    (2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;
    (3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.
    解答: (1)证明:∵△ADF绕着点A顺时针旋转90°,得到△ABG,
    ∴AF=AG,∠FAG=90°,
    ∵∠EAF=45°,
    ∴∠GAE=45°,
    在△AGE与△AFE中,

    ∴△AGE≌△AFE(SAS);
    (2)证明:设正方形ABCD的边长为a.
    将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.
    则△ADF≌△ABG,DF=BG.
    由(1)知△AEG≌△AEF,
    ∴EG=EF.
    ∵∠CEF=45°,
    ∴△BME、△DNF、△CEF均为等腰直角三角形,
    ∴CE=CF,BE=BM,NF=DF,
    ∴a﹣BE=a﹣DF,
    ∴BE=DF,
    ∴BE=BM=DF=BG,
    ∴∠BMG=45°,
    ∴∠GME=45°+45°=90°,
    ∴EG2=ME2+MG2,
    ∵EG=EF,MG=BM=DF=NF,
    ∴EF2=ME2+NF2;
    (3)解:EF2=2BE2+2DF2.
    点评: 本题是四边形综合题,其中涉及到正方形的性质,旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,矩形的性质,勾股定理.准确作出辅助线利用数形结合及类比思想是解题的关键.


    A.
    5
    B.
    ﹣3
    C.
    0
    D.
    ﹣2

    A.
    0.1008×106
    B.
    1.008×106
    C.
    1.008×105
    D.
    10.08×104

    A.
    22=4
    B.
    20=0
    C.
    2﹣1=﹣2
    D.
    =±2

    A.
    156
    B.
    162
    C.
    165
    D.
    167

    A.
    AB∥CD
    B.
    AB=CD
    C.
    AC=BD
    D.
    OA=OC

    A.
    摸出的2个球都是白球
    B.
    摸出的2个球有一个是白球

    C.
    摸出的2个球都是黑球
    D.
    摸出的2个球有一个黑球

    A.
    π
    B.

    C.

    D.


    A.
    AD=BD
    B.
    BD=CD
    C.
    ∠A=∠BED
    D.
    ∠ECD=∠EDC

    A.
    n=﹣2m
    B.
    n=﹣
    C.
    n=﹣4m
    D.
    n=﹣
    类别
    频数
    频率
    助人为乐美德少年
    a
    0.20
    自强自立美德少年
    3
    b
    孝老爱亲美德少年
    7
    0.35
    诚实守信美德少年
    6
    0.32
    品名
    黄瓜
    茄子
    批发价(元/千克)
    3
    4
    零售价(元/千克)
    4
    7

    A.
    5
    B.
    ﹣3
    C.
    0
    D.
    ﹣2

    A.
    0.1008×106
    B.
    1.008×106
    C.
    1.008×105
    D.
    10.08×104

    A.
    22=4
    B.
    20=0
    C.
    2﹣1=﹣2
    D.
    =±2

    A.
    156
    B.
    162
    C.
    165
    D.
    167

    A.
    AB∥CD
    B.
    AB=CD
    C.
    AC=BD
    D.
    OA=OC

    A.
    摸出的2个球都是白球
    B.
    摸出的2个球有一个是白球

    C.
    摸出的2个球都是黑球
    D.
    摸出的2个球有一个黑球

    A.
    π
    B.

    C.

    D.


    A.
    AD=BD
    B.
    BD=CD
    C.
    ∠A=∠BED
    D.
    ∠ECD=∠EDC

    A.
    n=﹣2m
    B.
    n=﹣
    C.
    n=﹣4m
    D.
    n=﹣
    类别
    频数
    频率
    助人为乐美德少年
    a
    0.20
    自强自立美德少年
    3
    b
    孝老爱亲美德少年
    7
    0.35
    诚实守信美德少年
    6
    0.32
    品名
    黄瓜
    茄子
    批发价(元/千克)
    3
    4
    零售价(元/千克)
    4
    7

    相关试卷

    福建省三明市中考数学试卷(含解析版):

    这是一份福建省三明市中考数学试卷(含解析版),共23页。

    福建省三明市中考数学试卷(含解析版):

    这是一份福建省三明市中考数学试卷(含解析版),共29页。

    福建省三明市中考数学试卷(含解析版):

    这是一份福建省三明市中考数学试卷(含解析版),共25页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map