年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    备战2025年高考二轮复习生物(河北版)大题分析与表达练1细胞代谢(Word版附解析)

    备战2025年高考二轮复习生物(河北版)大题分析与表达练1细胞代谢(Word版附解析)第1页
    备战2025年高考二轮复习生物(河北版)大题分析与表达练1细胞代谢(Word版附解析)第2页
    备战2025年高考二轮复习生物(河北版)大题分析与表达练1细胞代谢(Word版附解析)第3页
    还剩7页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备战2025年高考二轮复习生物(河北版)大题分析与表达练1细胞代谢(Word版附解析)

    展开

    这是一份备战2025年高考二轮复习生物(河北版)大题分析与表达练1细胞代谢(Word版附解析),共10页。试卷主要包含了细胞代谢学生用书P245等内容,欢迎下载使用。
    1.(2024·湖南模拟)(8分)植物吸收的光能超过光合作用所能利用的量时引起光能转化效率下降的现象称为光抑制。光抑制主要发生在叶肉细胞的PSⅡ系统,该系统吸收光能,将水分解为O2和H+并释放电子,但电子积累过多时会产生活性氧破坏PSⅡ系统的功能,使光合速率下降。番茄叶肉细胞中存在非光化学淬灭(NPQ)机制,可通过叶黄素将过剩光能以热能形式散失。完成下列问题。
    (1)PSⅡ系统存在于叶肉细胞的 (结构)。
    (2)强光条件下,NPQ机制将叶绿体吸收的过剩光能转化为热能散失,减少了PSⅡ系统产生的 、 ,从而减轻其对叶绿体结构的破坏。强光会先抑制光合作用 阶段,减少 的产生,其中后者作为活泼的还原剂。
    (3)为研究V基因在高光条件下对NPQ机制的作用,科研人员利用V基因沉默型番茄,与野生型番茄经过相同高光处理,实验结果如图,说明高光条件下V基因的表达 。
    答案(1)(叶绿体)类囊体薄膜
    (2)电子 活性氧 光反应 ATP和NADPH
    (3)促进NPQ机制的激活
    解析(1)PSⅡ系统吸收光能,将水分解为O2和H+并释放电子,是光反应水的光解过程,发生在叶绿体的类囊体薄膜,因此PSⅡ系统存在于叶肉细胞的类囊体薄膜。
    (2)NPQ机制将叶绿体吸收的过剩光能转化为热能散失,PSⅡ系统吸收的光能减少,释放的电子减少,产生的活性氧减少,从而减轻其对叶绿体结构的破坏。PSⅡ系统进行水的光解过程,强光破坏PSⅡ系统的功能,会先抑制光合作用的光反应阶段,减少ATP和NADPH的产生,其中NADPH作为活泼的还原剂。
    (3)结合题图可知,野生型经高光处理后NPQ的激活程度明显增高,而V基因沉默型在黑暗和高光处理条件下NPQ的激活程度均较低,说明V基因的表达能够促进NPQ机制的激活。根据以上信息推测V基因表达增强更有利于在强光下激活NPQ机制,保护PSⅡ系统,适应强光环境。
    2.(2024·湖南衡阳模拟)(14分)马拉松长跑过程中,约有60%的能量由脂肪提供,运动员往往出现心跳加快、呼吸加深、大量出汗、口渴等生理反应。图1为运动员体内部分物质和能量代谢关系示意图,请回答下列问题。
    图1
    (1)马拉松长跑过程中,细胞呼吸产生的二氧化碳量和消耗氧气量的比值 (填“大于”“小于”或“等于”)1,葡萄糖储存的能量经有氧呼吸释放后,其主要去向是 。
    (2)[H]的本质是 ,在有氧呼吸的第二阶段,是否需要氧气的存在,请提出一种合理的解释: 。
    (3)有氧呼吸过程中,[H]中的H+需要经过一系列过程才能传递给分子氧,氧与之结合生成水,图2为其传递过程的两条途径,真核生物体内存在其中的一条或两条途径。回答相关问题。
    图2
    ①研究发现,“物质6→物质7”过程易被氰化物抑制。若小鼠氰化物中毒,则其细胞呼吸全被抑制,导致小鼠死亡;而对天南星科植物用氰化物处理,会使其呼吸速率降低,但其细胞呼吸并未完全被抑制。结果表明:天南星科植物存在 (填“途径1”“途径2”或“途径1和途径2”)。
    ②天南星在开花时,其花序会释放大量能量,花序温度比周围温度高15~35 ℃,促使恶臭物质散发以吸引昆虫进行传粉。研究发现,此时花序中ATP生成量并没有明显增加。花序温度升高但ATP生成没有明显增加的原因是 。
    答案(1)小于 以热能的形式散失
    (2)NADH 需要,只有在氧气存在的情况下,丙酮酸才能进入线粒体
    (3)途径1和途径2 途径2增强,物质氧化分解释放的能量储存在ATP中的较少,大部分以热能形式散失
    解析(1)马拉松长跑过程中,需要消耗大量的能量,只依靠糖类氧化分解不足以维持,所以需要消耗脂肪提供能量。因为与糖类相比,脂肪中氢的含量多,氧的含量少,脂肪的氧化分解需要消耗更多的氧,同时释放大量的氧气,因此运动员在马拉松长跑过程中,细胞呼吸产生的二氧化碳量小于消耗的氧气量,所以其比值小于1。葡萄糖储存的能量经有氧呼吸释放后,能量主要以热能的形式散失。(2)[H]的本质是NADH。因为只有在氧气存在的情况下,丙酮酸才能进入线粒体,所以在有氧呼吸的第二阶段需要氧气。(3)①“物质6→物质7”过程易被氰化物抑制。若小鼠氰化物中毒,则其细胞呼吸作用全被抑制,导致小鼠死亡,说明小鼠只存在途径1;对天南星科植物用氰化物处理,会使其呼吸速率降低,但其细胞呼吸并未完全被抑制,说明天南星科植物存在途径1和途径2。②天南星在开花时,花序温度升高但ATP生成没有明显增加的原因是途径2增强,物质氧化分解释放的能量储存在ATP中较少,大量以热能形式散失。
    3.(2024·重庆二模)(14分)植物含有叶绿体的细胞在光照下不仅能进行CO2同化,而且存在依赖光的消耗O2释放CO2的耗能反应,称为光呼吸。其大致过程如图所示。
    (1)由图可知,光呼吸过程中消耗O2的细胞器是 ,判断依据是 。产生CO2的细胞器是 。
    (2)引起光呼吸作用的基础是光合作用中固定CO2的酶Rubisc具有双重功能,既能催化CO2固定又能催化O2与C5结合,形成C3和C2,导致光合效率下降。CO2和O2竞争性结合Rubisc的同一活性位点。据此推测,在农业生产中可通过 (至少填一种措施)增加作物产量。
    (3)当CO2和O2分压比降低时,暗反应减慢, 积累导致H2O光解产生的电子与O2结合产生自由基对膜结构造成伤害。光呼吸途径的存在可减轻这种伤害,其机理是 。
    (4)尝试从能量和反应条件(光)两方面说明光呼吸和细胞呼吸的不同点: 。
    答案(1)叶绿体 光呼吸过程中O2需要与叶绿体中的RuBP结合 线粒体
    (2)适当提高CO2浓度
    (3)NADPH 光呼吸产生的C3和CO2可加快暗反应的进行,促进水光解产生的电子与NADP+结合,减少与O2结合(产生自由基),从而避免其对叶绿体结构造成伤害
    (4)光呼吸不产生ATP,需要光;细胞呼吸产生ATP,有光无光均能进行
    解析(1)植物含有叶绿体的细胞在光照下不仅能进行CO2同化,而且存在依赖光的消耗O2释放CO2的耗能反应,称为光呼吸。根据图示信息可知,光呼吸过程中O2需要与叶绿体中的RuBP结合并在酶的作用下生成乙醇酸,所以消耗O2的场所在叶绿体。产生CO2的细胞器是线粒体。(2)根据题意可知,Rubisc具有双重功能,既能催化CO2固定又能催化O2与C5结合,形成C3和C2,导致光合效率下降。CO2和O2竞争性结合Rubisc的同一活性位点,因此可通过适当提高CO2浓度,促进CO2和Rubisc的活性位点结合,进而提高光合作用,增加作物产量。(3)当CO2和O2分压比降低时,暗反应减慢,NADPH的消耗速率减慢,光反应产生的NADPH会积累,导致H2O光解产生的电子与O2结合产生自由基对膜结构造成伤害。光呼吸产生的C3和CO2可加快暗反应的进行,促进水光解产生的电子与NADP+结合,减少与O2结合(产生自由基),从而避免其对叶绿体结构造成伤害。(4)从能量的角度来看,光呼吸不产生ATP,细胞呼吸产生ATP;从反应条件(光)的角度来看,光呼吸需要光才能进行,细胞呼吸有光无光均能进行。
    4.(2024·山西晋中模拟)(15分)图1是拟南芥进行光合作用的示意图,PSⅠ(光系统Ⅰ)和PSⅡ(光系统Ⅱ)是由蛋白质和光合色素组成的复合物。回答下列问题。
    图1
    (1)光反应过程中光能转换成电能,最终转换为 。若CO2浓度降低,则图中电子传递速率会 (填“升高”或“降低”),原因是 。
    (2)强光条件下,过剩的光能会对PSⅡ复合体造成损伤,导致光合作用强度减弱。遭受强光损伤的拟南芥幼叶细胞中,叶绿素酶(CLH)基因表达量明显上升,科研人员为研究幼叶应对强光影响的机制,分别测定野生型(WT)、CLH基因缺失的突变型(clh-1)和CLH基因过量表达的突变型(clh-2)拟南芥在强光照射后的生存率,结果如图2所示。据图可知,CLH基因可以 拟南芥在强光照射后的生存能力。
    图2
    图3
    (3)科研人员研究发现,拟南芥的H基因突变体在22 ℃下生长与野生型无差别,而30 ℃下生长则叶片呈白色。
    ①30 ℃时,叶片呈白色的原因是叶绿体发育异常, 合成受阻。
    ②科研人员用特定抗体检测H蛋白在叶绿体内的分布,结果如图3所示(各泳道的蛋白质样量均保持一致),依据实验结果可以得出的结论是 。
    ③H蛋白是一种热应激蛋白(温度升高时表达),调控叶绿体基因编码的RNA聚合酶的活性。据此推测,H基因突变体在30 ℃时叶片呈白色的原因是 。
    答案(1)ATP和NADPH中活跃的化学能 降低 CO2浓度降低,C3生成量减少,用于还原C3的NADPH消耗量减少,生产的NADP+减少,接受的e-减少
    (2)提高
    (3)叶绿素 H蛋白主要分布于类囊体上 H基因突变导致H蛋白在30 ℃时不表达(H蛋白失活),叶绿体中RNA聚合酶活性降低,影响类囊体上与光合色素合成相关的基因转录,使光合色素合成受阻
    解析(1)在光反应的过程中:光能转换为电能,电能再转换为活跃的化学能,存储在ATP和NADPH中,在暗反应过程中,ATP和NADPH中的活跃化学能转化为稳定的化学能存储在有机物中。分析图1可知,若CO2浓度降低,C3生成量减少,用于还原C3的NADPH消耗量减少,生产的NADP+减少,接受的e-减少,则图1中电子传递速率会降低。
    (2)图2曲线显示野生型拟南芥(WT)在强光照射时间超过一天后,生存率开始降低;CLH基因缺失的突变型拟南芥(clh-1)在强光照射时间超过一天后,生存率也开始降低,且降低幅度大于野生型拟南芥;CLH基因过量表达的突变型拟南芥(clh-2)在强光照射时间超过一天后,生存率不变,推测CLH基因可以提高拟南芥在强光照射后的生存能力。
    (3)①在正常情况下,叶片呈绿色是因为叶绿体中含有叶绿素,30 ℃时,叶片呈白色的原因是叶绿体发育异常,这是由叶绿素合成受阻所致。②由图3可知,H蛋白在叶绿体基质中含量低,而在类囊体中含量高,故根据实验结果可知,H蛋白主要分布于类囊体上。③H蛋白是一种热应激蛋白(温度升高时表达),调控叶绿体基因编码的RNA聚合酶的活性。据此推测,H基因突变体在30 ℃时叶片呈白色的原因是H基因突变导致H蛋白在30 ℃时不表达(H蛋白失活),叶绿体中RNA聚合酶活性降低,影响类囊体上光合色素合成相关的基因转录,使光合色素合成受阻。
    5.(2024·山东枣庄二模)(12分)小麦、水稻等大多数植物,在暗反应阶段,CO2被C5固定以后形成C3,进而被还原成(CH2O),这类植物称为C3植物。而玉米、甘蔗等原产在热带的植物,CO2中的碳首先转移到草酰乙酸(C4)中,然后转移到C3中,这类植物称为C4植物,其固定CO2的途径如图1所示。芦荟、仙人掌等植物白天气孔关闭,夜间气孔开放,这类植物在进化中形成了特殊的固碳途径,如图2所示,这类植物称为CAM植物。(注:PEP羧化酶比RuBP羧化酶对CO2的亲和力更强)
    图1
    图2
    (1)C4植物的光反应发生在 细胞中。在夏季炎热干旱的中午,C4植物比C3植物的优越性表现为 。
    (2)CAM植物参与卡尔文循环的CO2直接来源于 过程,夜晚其叶肉细胞能产生ATP的场所是 。
    (3)蝴蝶兰因花色艳丽、花姿优美、开花期长,一直以来深受爱花者的青睐。有人想在室内大量培养蝴蝶兰,又担心植物多,在夜晚会释放大量的CO2不利于健康。请你根据图1、图2的固碳途径,利用CO2传感器,设计实验探究蝴蝶兰是否属于CAM植物。
    实验思路: 。
    实验结果和结论: 。
    答案(1)叶肉 夏季炎热干旱的中午,植物气孔大量关闭,使得空气中的CO2不易进入细胞,细胞内CO2浓度较低,而C4植物的PEP羧化酶比RuBP羧化酶对CO2的亲和力更强,可以利用低浓度的CO2进行光合作用
    (2)苹果酸分解和细胞呼吸(有氧呼吸) 细胞质基质和线粒体
    (3)在密闭装置内种植蝴蝶兰,利用CO2传感器测定其白天和夜晚CO2含量变化的差异 若密闭容器内白天CO2含量不变,晚上CO2含量下降,则为CAM植物;若白天CO2含量下降,晚上CO2含量增多,则不是CAM植物
    解析(1)结合图1可知,叶肉细胞的叶绿体中有类囊体没有RuBP羧化酶,因此可以进行光反应,不能进行暗反应;C4植物的PEP羧化酶活性较强,对CO2的亲和力很大,这种酶就起一个“二氧化碳泵”的作用,把外界CO2“压”进维管束鞘薄壁细胞中去,增加维管束鞘薄壁细胞内的CO2浓度。所以,在炎热干旱环境中,叶片关闭气孔以减少水分的丧失,导致叶片中CO2浓度大大下降,因此在这样的环境中,C4植物在较低CO2浓度时光合速率高于C3植物。(2)结合图2可知,CAM植物参与卡尔文循环的CO2直接来源于呼吸过程(有氧呼吸)释放和苹果酸分解;夜晚其叶肉细胞能产生ATP的过程是细胞呼吸,场所是细胞质基质和线粒体。(3)CAM植物白天气孔关闭,夜间气孔开放,因此要设计实验探究蝴蝶兰是否属于CAM植物,可从密闭容器内白天和晚上CO2的浓度变化可知,将蝴蝶兰培养在透明的密闭容器内,置于自然环境中,若白天CO2含量不变,晚上CO2含量下降,则为CAM植物;若白天CO2含量下降,晚上CO2含量增多,则不是CAM植物。
    6.(2024·河南模拟)(16分)光系统Ⅰ和光系统Ⅱ是植物光合作用的捕光复合物、放氧复合物和电子传递复合物等。藻蓝蛋白是海洋藻类中吸收光能的一类蛋白质,能吸收550~650 nm内不同波长的光,影响光合作用的效率。为研究藻蓝蛋白的功能,研究人员以缺失细胞壁的莱茵衣藻突变体(cc849)、基于cc849制备的高表达藻蓝蛋白FACHB314的转基因莱茵衣藻藻株(Cr-PC)和高表达藻蓝蛋白FACHB314及FACHB314合成酶的莱茵衣藻藻株(Cr-PCHP)为材料,研究相关光合参数,结果如图1和图2所示。回答下列问题。
    图1
    图2
    (1)莱茵衣藻属于单细胞真核生物。光系统Ⅰ和光系统Ⅱ分布在叶绿体的 上,捕光复合物中的叶绿素主要吸收可见光中的 。不能用低渗溶液培养cc849藻株,原因是 。
    (2)结合实验结果分析,藻蓝蛋白FACHB314吸收的光 (填“能”或“不能”)输入光合作用系统,判断依据是 。
    (3)检测以上三种莱茵衣藻的生长曲线和干重(有机干物质量),结果如图3和图4所示。
    图3
    图4
    在培养过程中,检测培养液中莱茵衣藻的细胞数量时,可采用的方法是 。重组藻蓝蛋白FACHB314的表达对莱茵衣藻生长和有机物的积累具有 作用,基于上述研究,原因是 。
    答案(1)类囊体薄膜 红光和蓝紫光 cc849藻株的细胞壁缺失,在低渗溶液中会吸水涨破
    (2)能 Cr-PC和Cr-PCHP藻株均高表达藻蓝蛋白FACHB314,两者的光系统Ⅰ和光系统Ⅱ的电子传递速率均高于cc849藻株
    (3)抽样检测法(或显微镜直接计数法) 促进 藻蓝蛋白FACHB314能提高光系统的电子传递速率,提高光合速率,增加有机物的积累量
    解析(1)莱茵衣藻属于单细胞真核生物。光系统Ⅰ和光系统Ⅱ参与光反应,存在于莱茵衣藻叶绿体的类囊体薄膜上。叶绿素主要吸收可见光中的红光和蓝紫光。cc849藻株的细胞壁缺失,在低渗溶液中容易吸水涨破,因而不能用低渗溶液培养cc849藻株。(2)根据实验结果,Cr-PC和Cr-PCHP藻株均高表达藻蓝蛋白FACHB314,二者的光系统Ⅰ和光系统Ⅱ的电子传递速率均高于cc849藻株,说明藻蓝蛋白FACHB314吸收的光能输入光合作用系统,从而能提高光合速率。(3)在培养过程中,检测培养液中莱茵衣藻的细胞数量时,可采用抽样检测法。根据实验结果,Cr-PC和Cr-PCHP藻株均高表达藻蓝蛋白FACHB314,其细胞密度和干重均大于cc849藻株,说明重组藻蓝蛋白的表达对莱茵衣藻生长和有机物的积累具有促进作用,原因是藻蓝蛋白吸收光能,提高了光系统的电子传递速率,提高了光合速率。
    7.(2024·广东韶关二模)(14分)研究人员发现大豆细胞中GmPLP1(一种光受体蛋白)的表达量在强光下显著下降。据此,他们作出GmPLP1参与强光胁迫响应的假设。为验证该假设,他们选用WT(野生型)、GmPLP1-x(GmPLP1过表达)和GmPLP1-i(GmPLP1低表达)转基因大豆幼苗为材料进行相关实验,结果如图1所示。请回答下列问题。
    图1
    (1)强光胁迫时,过剩的光能会对光反应关键蛋白复合体(PSⅡ)造成损伤,并产生活性氧(影响PSⅡ的修复),进而影响 和ATP的供应,导致暗反应中 (填生理过程)减弱,生成的有机物减少,致使植物减产。
    (2)图1中,光照强度大于1 500 μml/(m2·s)时,随着光照强度的增加,三组实验大豆幼苗的净光合速率均增加缓慢,分析其原因可能是 (试从暗反应角度答出2点)。该实验结果表明GmPLP1参与强光胁迫响应,判断依据是 。
    (3)研究小组在进一步的研究中发现,强光会诱导蛋白质GmVTC2b的表达。为探究GmVTC2b是否参与大豆对强光胁迫的响应,他们测量了弱光和强光下WT(野生型)和GmVTC2b-x(GmVTC2b过表达)转基因大豆幼苗中抗坏血酸(可清除活性氧)的含量,结果如图2所示。
    图2
    依据结果可推出在强光胁迫下GmVTC2b增强了大豆幼苗对强光胁迫的耐受性(生物对强光胁迫的忍耐程度),其原理是 。
    (4)经进一步的研究,研究人员发现GmPLP1通过抑制GmVTC2b的功能,减弱大豆幼苗对强光胁迫的耐受性。若在第(3)小题实验的基础上增设一个实验组进行验证,该实验组的选材为 的转基因大豆幼苗(提示:可通过转基因技术得到相应基因过表达和低表达的植物)。根据以上信息,试提出一个可提高大豆对强光胁迫的耐受性,从而达到增产目的的思路: (答出1点即可)。
    答案(1)NADPH C3的还原
    (2)受胞间CO2浓度的限制;受光合作用有关酶的数量(活性)的限制;受温度的影响 一定范围内,光照较强时,与WT相比,GmPLP1的表达量增加会抑制大豆幼苗的光合作用,GmPLP1的表达量减少会促进大豆幼苗的光合作用
    (3)GmVTC2b通过增加抗坏血酸含量进而提高大豆清除活性氧的能力,从而增加植株对强光胁迫的耐受性
    (4)GmVTC2b过表达和GmPLP1过表达(或GmVTC2b过表达和GmPLP1低表达) 抑制大豆细胞中GmPLP1的表达;促进大豆细胞中GmVTC2b的表达;增加大豆细胞中抗坏血酸的含量
    解析(1)强光胁迫时,过剩的光能会对光反应关键蛋白复合体(PSⅡ)造成损伤,光反应减弱,光反应产生的ATP和NADPH减少,而暗反应阶段中C3的还原需要光反应提供ATP和NADPH,因此会导致暗反应中C3的还原减弱,生成的有机物减少,致使植物减产。(2)由于胞间CO2浓度的限制,二氧化碳吸收速率有限,光合作用有关酶的数量(活性)的限制以及温度的影响等,导致光照强度大于1 500 μml/(m2·s)时,随着光照强度的增加,三组实验大豆幼苗的净光合速率均增加缓慢。由图1可知一定范围内,光照较强时,与WT相比,GmPLP1的表达量增加(GmPLP1-x组)会抑制大豆幼苗的光合作用,GmPLP1的表达量减少(GmPLP1-i组)会促进大豆幼苗的光合作用,该结果表明GmPLP1参与强光胁迫响应。(3)由图2可知,GmVTC2b通过增加抗坏血酸含量进而提高大豆清除活性氧的能力,从而增加植株对强光胁迫的耐受性,因此在强光胁迫下GmVTC2b增强了大豆幼苗对强光胁迫的耐受性(生物对强光胁迫的忍耐程度)。(4)为了验证GmPLP1通过抑制GmVTC2b的功能,减弱大豆幼苗对强光胁迫的耐受性,因此可通过设置GmVTC2b过表达和GmPLP1过表达(或GmVTC2b过表达和GmPLP1低表达)的转基因大豆幼苗来进行实验。根据以上信息,可通过抑制大豆细胞中GmPLP1的表达,促进大豆细胞中GmVTC2b的表达,增加大豆细胞中抗坏血酸的含量等方法,提高大豆对强光胁迫的耐受性,达到增产的目的。

    相关试卷

    备战2025年高考二轮复习生物(山东版)大题分析与表达练1细胞代谢(Word版附解析):

    这是一份备战2025年高考二轮复习生物(山东版)大题分析与表达练1细胞代谢(Word版附解析),共10页。试卷主要包含了02,01,41等内容,欢迎下载使用。

    备战2025年高考二轮复习生物(通用版)大题分析与表达练1细胞代谢(Word版附解析):

    这是一份备战2025年高考二轮复习生物(通用版)大题分析与表达练1细胞代谢(Word版附解析),共9页。

    新教材高考生物二轮复习大题分析与表达练1细胞代谢类大题突破含答案:

    这是一份新教材高考生物二轮复习大题分析与表达练1细胞代谢类大题突破含答案,共11页。试卷主要包含了87等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map