湖南省2024年普通高中学业水平合格性模拟考试高考数学仿真卷七学生版
展开时量:90分钟满分:100分
一、选择题:本大题共18小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知复数,则的虚部为()
A1B. C. D.
2. 已知集合,则( )
AB.
C. D.
3. 已知,,平面向量的坐标是()
A. B. C. D.
4. 若,则下列各式一定正确的是()
A. B. C. D.
5. 与为相等函数的是()
A. B. C. D.
6. 已知是第二象限角,,则( )
A. B. C. D.
7. 小胡同学用二分法求函数在内近似解的过程中,由计算可得,,,则小胡同学在下次应计算的函数值为()
A. B. C. D.
8. 函数的大致图像是()
A. B. C. D.
9. 已知正实数满足,则的最小值是()
A. 7B. 8C. 9D. 10
10. 下列函数在区间上单调递减的是()
A. B.
C. D.
11. 化简,得()
A. B. C. D.
12. 在一段时间内,若甲去参观市博物馆的概率0.6,乙去参观市博物馆的概率为0.3,且甲乙两人各自行动,则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()
A. 0.28B. 0.36C. 0.54D. 0.72
13. 已知向量与且则一定共线的三点是()
A. A,C,D三点B. A,B,C三点
C. A,B,D三点D. B,C,D三点
14. 下列区间中,函数单调递增的区间是()
AB. C. D.
15. 如下图所示,在正方体中,,分别是,的中点,则异面直线与所成的角的大小为()
A. B. C. D.
16. 从1,2,3,4,5这五个数字中任取两数,则所取两数均为偶数的概率是()
AB. C. D.
17. 已知,,,则的大小关系是()
A. B.
C. D.
18. 已知函数则下列说法正确的是()
A. 是上的增函数
B. 的值域为
C. “”是“”的充要条件
D. 若关于的方程恰有一个实根,则
二、填空题:本大题共4小题,每小题4分,共16分.
19. 某班有50名学生,按男、女生分层随机抽样,从男、女生中各取样6人和9人,则这个班男生人数是班级总人数的__________.
20. 长方体的所有顶点都在一个球面上,长、宽、高分别为2,1,1,那么这个球的表面积是______.
21. 已知是偶函数,当时,,且,则__________.
22. 在中,内角所对的边分别为,则的面积为__________.
三、解答题:本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.
23. 如图,在正方体中,E是的中点.
(1)求证:平面;
(2)设正方体棱长为1,求三棱锥的体积.
24. 已知函数.
(1)求函数的定义域;
(2)若函数的图象过,求的单调区间.
25. 2023年10月22日,汉江生态城2023襄阳马拉松在湖北省襄阳市成功举行,志愿者的服务工作是马拉松成功举办的重要保障,襄阳市新时代文明实践中心承办了志愿者选拔的面试工作.现随机抽取了100名候选者的面试成绩,并分成五组:第一组,第二组,第三组,第四组,第五组,绘制成如图所示的频率分布直方图.已知第一、二组的频率之和为0.3,第一组和第五组的频率相同.
(1)估计这100名候选者面试成绩的平均数和第25百分位数;
(2)现从以上各组中用分层随机抽样的方法选取20人,担任本市的宣传者.若本市宣传者中第二组面试者的面试成绩的平均数和方差分别为62和40,第四组面试者的面试成绩的平均数和方差分别为80和70,据此估计这次第二组和第四组所有面试者的面试成绩的方差.
湖南省2024年普通高中学业水平合格性模拟考试高考数学仿真卷四学生版: 这是一份湖南省2024年普通高中学业水平合格性模拟考试高考数学仿真卷四学生版,共4页。
湖南省2024年普通高中学业水平合格性模拟考试高考数学仿真卷六学生版: 这是一份湖南省2024年普通高中学业水平合格性模拟考试高考数学仿真卷六学生版,共4页。
湖南省2024年普通高中学业水平合格性模拟考试高考数学仿真卷五学生版: 这是一份湖南省2024年普通高中学业水平合格性模拟考试高考数学仿真卷五学生版,共4页。