终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年山东省烟台市中考数学试题含答案

    立即下载
    加入资料篮
    2024年山东省烟台市中考数学试题含答案第1页
    2024年山东省烟台市中考数学试题含答案第2页
    2024年山东省烟台市中考数学试题含答案第3页
    还剩37页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年山东省烟台市中考数学试题含答案

    展开

    这是一份2024年山东省烟台市中考数学试题含答案,共40页。
    1.本试卷共8页,共120分;考试时间120分钟.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座位号填写在试卷和答题卡规定的位置上.
    3.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.
    4.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.
    5.写在试卷上或答题卡指定区域外的答案无效.
    6.考试过程中允许考生进行剪、拼、折叠等实验.
    一、选择题(本大题共10个小题,每小题3分,满分30分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.
    1. 下列实数中的无理数是( )
    A. B. 3.14C. D.
    2. 下列运算结果为的是( )
    A. B. C. D.
    3. 下图是由8个大小相同的小正方体组成的几何体,若从标号为①②③④的小正方体中取走一个,使新几何体的左视图既是轴对称图形又是中心对称图形,则应取走( )

    A. ①B. ②C. ③D. ④
    4. 实数,,在数轴上的位置如图所示,下列结论正确的是( )
    A B. C. D.
    5. 目前全球最薄的手撕钢产自中国,厚度只有0.015毫米,约是纸厚度的六分之一,已知1毫米百万纳米,0.015毫米等于多少纳米?将结果用科学记数法表示为( )
    A. 纳米B. 纳米C. 纳米D. 纳米
    6. 射击运动队进行射击测试,甲、乙两名选手的测试成绩如下图,其成绩的方差分别记为和,则和的大小关系是( )
    A. B. C. D. 无法确定
    7. 某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线为的平分线的有( )
    A 1个B. 2个C. 3个D. 4个
    8. 如图,在正方形中,点E,F分别为对角线的三等分点,连接并延长交于点G,连接,若,则用含α的代数式表示为( )
    A. B. C. D.
    9. 《周髀算经》是中国现存最早的数理天文著作.书中记载这样一道题:“今有女子不善织,日减功迟.初日织五尺,末日织一尺,今三十日织,问织几何?”意思是:现有一个不擅长织布的女子,织布的速度越来越慢,并且每天减少的数量相同.第一天织了五尺布,最后一天仅织了一尺布,天完工,问一共织了多少布?
    A. 尺B. 尺C. 尺D. 尺
    10. 如图,水平放置的矩形中,,,菱形的顶点,在同一水平线上,点与的中点重合,,,现将菱形以的速度沿方向匀速运动,当点运动到上时停止,在这个运动过程中,菱形与矩形重叠部分的面积与运动时间之间的函数关系图象大致是( )
    A. B.
    C. D.
    二、填空题(本大题共6个小题,每小题3分,满分18分)
    11. 若代数式在实数范围内有意义,则x的取值范围为________.
    12. 关于的不等式有正数解,的值可以是______(写出一个即可).
    13. 若一元二次方程的两根为m,n,则的值为________.
    14. 如图,在边长为6的正六边形中,以点F为圆心,以的长为半径作,剪下图中阴影部分做一个圆锥的侧面,则这个圆锥的底面半径为________.
    15. 如图,在中,,,.E为边的中点,F为边上的一动点,将沿翻折得,连接,,则面积的最小值为________.
    16. 已知二次函数的与的部分对应值如下表:
    下列结论:;关于的一元二次方程有两个相等的实数根;当时,的取值范围为;若点,均在二次函数图象上,则;满足的的取值范围是或.其中正确结论的序号为______.
    三、解答题(本大题共8个小题,满分72分)
    17. 利用课本上的计算器进行计算,按键顺序如下:,若是其显示结果的平方根,先化简:,再求值.
    18. “山海同行,舰回烟台”.2024年4月23日,烟台舰与家乡人民共庆人民海军成立75周年.值此,某学校开展了“奋进万亿新征程,共筑强国强军梦”的主题研学活动,为了解学生参与情况,随机抽取部分学生对研学活动时长(用t表示,单位:h)进行调查.经过整理,将数据分成四组(A组:;B组:;C组:;D组:),并绘制了如下不完整的条形统计图和扇形统计图.
    (1)请补全条形统计图;
    (2)扇形统计图中,a的值为_____,D组对应的扇形圆心角的度数为______;
    (3)D组中有男、女生各两人,现从这四人中随机抽取两人进行研学宣讲,请用树状图或表格求所抽取的两人恰好是一名男生和一名女生的概率.
    19. 根据收集的素材,探索完成任务.
    20. 每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.
    (1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?
    (2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?
    21. 如图,正比例函数与反比例函数的图象交于点,将正比例函数图象向下平移个单位后,与反比例函数图象在第一、三象限交于点B,C,与x轴,y轴交于点D,E,且满足.过点B作轴,垂足为点F,G为x轴上一点,直线与关于直线成轴对称,连接.
    (1)求反比例函数的表达式;
    (2)求n值及的面积.
    22. 在等腰直角中,,,D为直线上任意一点,连接.将线段绕点D按顺时针方向旋转得线段,连接.
    【尝试发现】
    (1)如图1,当点D在线段上时,线段与的数量关系为________;
    【类比探究】
    (2)当点D在线段BC延长线上时,先在图2中补全图形,再探究线段BE与CD的数量关系并证明;
    【联系拓广】
    (3)若,,请直接写出的值.
    23. 如图,是的直径,内接于,点I为的内心,连接并延长交O于点D,E是上任意一点,连接,,,.
    (1)若,求的度数;
    (2)找出图中所有与相等的线段,并证明;
    (3)若,,求的周长.
    24. 如图,抛物线与轴交于,两点,与轴交于点,,,对称轴为直线,将抛物线绕点旋转后得到新抛物线,抛物线与轴交于点,顶点为,对称轴为直线.
    (1)分别求抛物线和的表达式;
    (2)如图,点的坐标为,动点在直线上,过点作轴与直线交于点,连接,.求的最小值;
    (3)如图,点的坐标为,动点在抛物线上,试探究是否存在点,使?若存在,请直接写出所有符合条件的点的坐标;若不存在,请说明理由.
    参考答案
    一、选择题(本大题共10个小题,每小题3分,满分30分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.
    1. 【答案】C
    【解析】解:A、是有理数,不符合题意;
    B、3.14是有理数,不符合题意;
    C、是无理数,符合题意;
    D、是有理数,不符合题意;
    故选C.
    2. 【答案】D
    【解析】A.,故选项不符合题意;
    B. ,故选项不符合题意;
    C.,故选项不符合题意;
    D.,故选项符合题意;
    故选:D.
    3. 【答案】A
    【解析】解:A、取走①时,左视图为 ,既是轴对称图形又是中心对称图形,故选项A符合题意;
    B、取走②时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项B不符合题意;
    C、取走③时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项C不符合题意;
    D、取走④时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项D不符合题意;
    故选:A.
    4. 【答案】B
    【解析】由数轴可得,,,,
    、,原选项判断错误,不符合题意,
    、,原选项判断正确,符合题意,
    、根据数轴可知:,原选项判断错误,不符合题意,
    、根据数轴可知:,则,原选项判断错误,不符合题意,
    故选:.
    5. 【答案】B
    【解析】解:0.015毫米纳米;
    故选B.
    6. 【答案】A
    【解析】解:∵方差表示数据的离散程度,方差越大,数据波动越大,方差越小,数据波动越小,由折线图可知乙选手的成绩波动较小,
    ∴;
    故选A.
    7. 【答案】D
    【解析】解:第一个图为尺规作角平分线的方法,为的平分线;
    第二个图,由作图可知:,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴为的平分线;
    第三个图,由作图可知,
    ∴,,

    ∴,
    ∴为的平分线;
    第四个图,由作图可知:,,
    ∴为的平分线;
    故选D.
    8. 【答案】B
    【解析】解:∵正方形中,点E,F分别为对角线的三等分点,
    ∴,,,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∵点E,F分别为对角线的三等分点,
    ∴,
    ∵正方形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    故选:B.
    9. 【答案】C
    【解析】解:由题意得,第一天织布尺,第天织布尺,
    ∴一共织布(尺),
    故选:.
    10. 【答案】D
    【解析】解:如图所示,设交于点,
    ∵菱形,,

    又∵,
    ∴是等边三角形,
    ∵,,



    当时,重合部分为,
    如图所示,
    依题意,为等边三角形,
    运动时间为,则,

    当时,如图所示,
    依题意,,则



    ∴当时,
    当时,同理可得,
    当时,同理可得,
    综上所述,当时,函数图象为开口向上的一段抛物线,当时,函数图象为开口向下的一段抛物线,当时,函数图象为一条线段,当时,函数图象为开口向下的一段抛物线,当时,函数图象为开口向上的一段抛物线;
    故选:D.
    二、填空题(本大题共6个小题,每小题3分,满分18分)
    11. 【答案】
    【解析】解:由题意,得:,
    解得:;
    故答案为:.
    12. 【答案】(答案不唯一)
    【解析】解:不等式移项得,,
    系数化为得,,
    ∵不等式有正数解,
    ∴,
    解得,
    ∴的值可以是,
    故答案为:.
    13. 【答案】6
    【解析】解:∵一元二次方程的两个根为,,
    ∴,

    故答案为:6.
    14. 【答案】
    【解析】解:∵正六边形,
    ∴,,
    ∴,,
    ∴,
    过点作于点,则:,
    设圆锥底面圆的半径为,则:,
    ∴;
    故答案为:.
    15. 【答案】##
    【解析】解:∵在中,,,
    ∴,,则,
    ∵E为边的中点,
    ∴,
    ∵沿翻折得,
    ∴,
    ∴点在以E为圆心,4为半径的圆上运动,如图,过E作交延长线于M,交圆E于,此时到边的距离最短,最小值为的长,即面积的最小,
    过C作于N,
    ∵,
    ∴,
    在中,,,
    ∴,
    ∴,
    ∴面积的最小值为,
    故答案为:.
    16. 【答案】
    【解析】解:把,,代入得,

    解得,
    ∴,故正确;
    ∵,,,
    ∴,
    当时,,
    ∴,
    ∵,
    ∴关于的一元二次方程有两个相等的实数根,故正确;
    ∵抛物线的对称轴为直线,
    ∴抛物线的顶点坐标为,
    又∵,
    ∴当时,随增大而增大,当时,随的增大而减小,当时,函数取最大值,
    ∵与时函数值相等,等于,
    ∴当时, 的取值范围为,故错误;
    ∵,
    ∴点,关于对称轴对称,
    ∴,故正确;
    由得,
    即,
    画函数和图象如下:
    由,解得,,
    ∴,,
    由图形可得,当或时,,即,故错误;
    综上,正确的结论为,
    故答案为:.
    三、解答题(本大题共8个小题,满分72分)
    17. 【答案】,.
    【解析】解:







    ∵,
    ∴的平方根为,
    ∵,
    ∴,
    又∵为的平方根,
    ∴,
    ∴原式.
    18. 【答案】(1)图见解析
    (2)
    (3)
    【解析】
    【小问1详解】
    解:,
    ∴组人数为:;
    补全条形图如图:
    【小问2详解】

    ∴,
    D组对应的扇形圆心角的度数为;
    故答案为:;
    【小问3详解】
    列表如下:
    共有12种等可能的结果,其中一男一女的结果有8种,
    ∴.
    19. 【答案】任务一:冬至,;任务二:乙楼中7层(含7层)以下不能安装该品牌太阳能热水器
    【解析】解:任务一:根据题意,要判断乙楼哪些楼层不能安装该品牌太阳能板,只需为冬至日时的最小角度,即,
    故答案为:冬至,;
    任务二:过E作于F,则,米,,
    在中,,
    ∴(米),
    ∵(米),
    ∴(米),
    (层),
    答:乙楼中7层(含7层)以下不能安装该品牌太阳能热水器.
    20. 【答案】(1),每辆轮椅降价20元时,每天的利润最大,为元
    (2)这天售出了64辆轮椅
    【解析】
    【小问1详解】
    解:由题意,得:;
    ∵每辆轮椅的利润不低于180元,
    ∴,
    ∴,
    ∵,
    ∴当时,随的增大而增大,
    ∴当时,每天的利润最大,为元;
    答:每辆轮椅降价20元时,每天的利润最大,为元;
    【小问2详解】
    当时,,
    解得:(不合题意,舍去);
    ∴(辆);
    答:这天售出了64辆轮椅.
    21. 【答案】(1)
    (2),
    【解析】
    【小问1详解】
    解:∵正比例函数与反比例函数的图象交于点,
    ∴,
    ∴,
    ∴;
    ∴;
    【小问2详解】




    ∵将正比例函数图象向下平移个单位,
    ∴平移后的解析式为:,
    如图所示,过点,作轴的平行线交轴于点,则,是等腰直角三角形,



    设,则
    ∴,
    ∴,
    ∵,,在上

    解得:(负值舍去)

    ∴,
    ∴的解析式为,
    当时,,则,
    ∴,,则
    ∵直线与关于直线成轴对称,轴,
    ∴,和是等腰直角三角形,

    ∴,
    ∵和是等腰直角三角形,


    22. 【答案】(1);(2),补图及证明见解析;(3)
    【解析】解:(1)如图,过点作延长线于点,
    由旋转得,,
    ∴,
    ∵,
    ∴,,
    ∴,
    ∴,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    故答案为:;
    (2)补全图形如图:
    ,理由如下:
    过点作延长线于点,
    由旋转得,,
    ∴,
    ∵,
    ∴,,
    ∴,
    ∴,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴;
    (3)如图,过点作延长线于点,
    由(2)得,,
    ∴,
    ∴,
    ∴.
    23. 【答案】(1)
    (2),证明见解析
    (3)30
    【解析】
    【小问1详解】
    解:∵是的直径,
    ∴,又,
    ∴,
    ∵四边形是内接四边形,
    ∴,
    ∴;
    【小问2详解】
    解:,
    证明:连接,
    ∵点I为的内心,
    ∴,,
    ∴,
    ∴,,
    ∵,,
    ∴,
    ∴;
    【小问3详解】
    解:过I分别作,,,垂足分别为Q、F、P,
    ∵点I为的内心,即为的内切圆的圆心.
    ∴Q、F、P分别为该内切圆与三边的切点,
    ∴,,,
    ∵,,,
    ∴,
    ∵,,,
    ∴,
    ∴的周长为

    24. 【答案】(1),
    (2)
    (3)存在,或
    【解析】
    【小问1详解】
    解:设对称轴与x轴交于点G,
    由题意得,
    ∵对称轴为直线,
    ∴,
    ∴,
    ∴,
    将A、B、C分别代入,
    得:,
    解得:,
    ∴,
    ∴,顶点为
    ∵抛物线绕点旋转后得到新抛物线,
    ∴抛物线的,顶点为,
    ∴的表达式为:,即
    【小问2详解】
    解:将点F向右平移2个单位至,则,,过点D作直线的对称点为,连接,
    ∴,
    ∵,
    ∴直线为直线,
    ∵轴,
    ∴,
    对于抛物线,令,则,
    ∴,
    ∵点D与点关于直线对称,
    ∴点,
    ∵轴,,
    ∴四边形为平行四边形,
    ∴,
    ∴,
    当点三点共线时,取得最小值,
    而,
    ∴的最小值为;
    【小问3详解】
    解:当点P在直线右侧抛物线上时,如图:
    ∵抛物线,

    ∵轴,
    ∴,
    ∵,
    ∴,
    ∴,
    作H关于直线的对称点,则点在直线上,
    ∵点的坐标为,直线:,
    ∴,
    设直线的表达式为:,
    代入,,
    得:,
    解得:,
    ∴直线的表达式为,
    联立,得:,
    解得:或(舍),
    ∴;
    ②当点P在直线左侧抛物线上时,延长交y轴于点N,作垂直平分线交于点Q,交y轴于点M,过点E作轴于点K,则,如图:
    ∵垂直平分,
    ∴,
    ∴,
    ∴,

    ∴,
    ∴,
    由点
    得:,
    ∵,
    ∴,
    ∴,
    ∴,
    设,
    ∴,,
    在和中,由勾股定理得,
    ∴,
    解得:或(舍)
    ∴,
    ∴,
    ∴,
    设直线表达式为:,
    代入点N,E,
    得:,
    解得:
    ∴直线表达式为:,
    联立,
    得:,
    整理得:
    解得:或(舍),
    ∴,
    综上所述,或.
    探究太阳能热水器的安装
    素材一
    太阳能热水器是利用绿色能源造福人类的一项发明.某品牌热水器主要部件太阳能板需要安装在每天都可以有太阳光照射到的地方,才能保证使用效果,否则不予安装.
    素材二
    某市位于北半球,太阳光线与水平线的夹角为α,冬至日时,;夏至日时,.
    ,,
    ,,
    ,,
    ,,
    素材三
    如图,该市甲楼位于乙楼正南方向,两楼东西两侧都无法获得太阳光照射.现准备在乙楼南面墙上安装该品牌太阳能板.已知两楼间距为54米,甲楼共11层,乙楼共15层,一层从地面起,每层楼高皆为3.3米,为某时刻太阳光线.
    问题解决
    任务一
    确定使用数据
    要判断乙楼哪些楼层不能安装该品牌太阳能板,应选择________日(填冬至或夏至)时,α为________(填,,,中的一个)进行计算.
    任务二
    探究安装范围
    利用任务一中选择的数据进行计算,确定乙楼中哪些楼层不能安装该品牌太阳能热水器.
    男1
    男2
    女1
    女2
    男1
    男1,男2
    男1,女1
    男1,女2
    男2
    男2,男1
    男2,女1
    男2,女2
    女1
    女1,男1
    女1,男2
    女1,女2
    女2
    女2,男1
    女2,男2
    女2,女1

    相关试卷

    精品解析:2024年山东省烟台市中考数学试题:

    这是一份精品解析:2024年山东省烟台市中考数学试题,文件包含精品解析2024年山东省烟台市中考数学试题原卷版docx、精品解析2024年山东省烟台市中考数学试题解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。

    2024年山东省烟台市中考数学试题(解析版):

    这是一份2024年山东省烟台市中考数学试题(解析版),共36页。

    2024年山东省烟台市中考数学试题:

    这是一份2024年山东省烟台市中考数学试题,共8页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map