终身会员
搜索
    上传资料 赚现金

    浙江省义乌市四校2024-2025学年九上数学开学学业质量监测试题【含答案】

    立即下载
    加入资料篮
    浙江省义乌市四校2024-2025学年九上数学开学学业质量监测试题【含答案】第1页
    浙江省义乌市四校2024-2025学年九上数学开学学业质量监测试题【含答案】第2页
    浙江省义乌市四校2024-2025学年九上数学开学学业质量监测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省义乌市四校2024-2025学年九上数学开学学业质量监测试题【含答案】

    展开

    这是一份浙江省义乌市四校2024-2025学年九上数学开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在3×3的正方形网格中,以线段AB为对角线作平行四边形,使另两个顶点也在格点上,则这样的平行四边形最多可以画( )
    A.2个B.3个C.4个D.5个
    2、(4分)某校九年级(1)班全体学生2018年初中毕业体育考试的成绩统计如表:
    根据表中的信息判断,下列结论中错误的是( )
    A.该班一共有45名同学
    B.该班学生这次考试成绩的众数是28
    C.该班学生这次考试成绩的平均数是25
    D.该班学生这次考试成绩的中位数是28
    3、(4分)如图,a,b,c分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是

    A.B.C.D.
    4、(4分)已知一次函数y=2x+a,y=﹣x+b的图象都经过A(﹣2,0),且与y轴分别交于B、C两点,则△ABC的面积为( )
    A.4B.5C.6D.7
    5、(4分)若一次函数y=kx+17的图象经过点(-3,2),则k的值为( )
    A.-6 B.6 C.-5 D.5
    6、(4分)若二次根式在实数范围内有意义,则a的取值范围是( )
    A.B.C.a>1D.a<1
    7、(4分)已知关于x的方程的解是正数,那么m的取值范围为( )
    A.m>-6且m≠2B.m<6C.m>-6且m≠-4D.m<6且m≠-2
    8、(4分)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线的长度是( )
    A.cmB.cmC.cmD.5cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知菱形的两条对角线长分别是6和8,则这个菱形的面积为_____.
    10、(4分)在四边形中,给出下列条件:① ② ③ ④
    其中能判定四边形是平行四边形的组合是________或 ________或_________或_________.
    11、(4分)若关于若关于x的分式方程的解为正数,那么字母a的取值范围是___.
    12、(4分)在新年晚会的投飞镖游戏环节中,名同学的投掷成绩(单位:环)分别是:,,,,,,,则这组数据的众数是________.
    13、(4分)如图,把一张矩形的纸沿对角线BD折叠,若AD=8,AB=6,则BE=__.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知,如图,在三角形中,,于,且.点从点出发,沿方向匀速运动,速度为;同时点由点出发,沿方向匀速运动,速度为,过点的动直线,交于点,连结,设运动时间为,解答下列问题:
    (1)线段_________;
    (2)求证:;
    (3)当为何值时,以为顶点的四边形为平行四边形?
    15、(8分)如图,△ABC全等于△DEF,点B,E,C,F在同一直线,连接AD,求证:四边形ABED是平行四边形.
    16、(8分)如图,已知在中,分别是的中点,连结.
    (1)求证:四边形是平行四边形;
    (2)若,求四边形的周长.
    17、(10分)已知关于x的方程x2-6x+m2-3m-5=0一个根是-1,求方程的另一个根和m的值.
    18、(10分)如图,直线与轴交于点,与轴交于点;直线与轴交于点,与直线交于点,且点的纵坐标为4.
    (1)不等式的解集是 ;
    (2)求直线的解析式及的面积;
    (3)点在坐标平面内,若以、、、为顶点的四边形是平行四边形,求符合条件的所有点的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)化简:=_______________.
    20、(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .
    21、(4分)二次三项式是完全平方式,则的值是__________.
    22、(4分)如果一个多边形的每一个外角都等于60°,则它的内角和是__________.
    23、(4分)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF,若△ABC的周长为10,则△DEF的周长为_______________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在矩形中,,,是边上一点,以点为直角顶点,在的右侧作等腰直角.
    (1)如图1,当点在边上时,求的长;
    (2)如图2,若,求的长;
    (3)如图3,若动点从点出发,沿边向右运动,运动到点停止,直接写出线段的中点的运动路径长.
    25、(10分)将一矩形纸片放在直角坐标系中,为原点,点在轴上,点在轴上,.
    (1)如图1,在上取一点,将沿折叠,使点落在边上的点处,求直线的解析式;
    (2)如图2,在边上选取适当的点,将沿折叠,使点落在边上的点处,过作于点,交于点,连接,判断四边形的形状,并说明理由;
    (3)、在(2)的条件下,若点坐标,点在直线上,问坐标轴上是否存在点,使以为顶点的四边形是平行四边形,若存在,请直接写出点坐标;若不存在,请说明理由.
    26、(12分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形.
    (1)三角形三边长为4,3,;
    (2)平行四边形有一锐角为45°,且面积为1.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据平行四边形的判定方法即可解决问题.
    【详解】
    在直线AB的左下方有5个格点,都可以成为平行四边形的顶点,所以这样的平行四边形最多可以画5个,
    故选D.
    本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题.
    2、C
    【解析】
    根据总数,众数,中位数的定义即可一一判断;
    【详解】
    解:该班一共有:1+5+4+10+15+10=45(人),众数是28分,中位数为28分,
    故A、B、D正确,C错误,
    故选:C.
    本题考查总数,众数,中位数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
    3、C
    【解析】
    根据图形就可以得到一个相等关系与一个不等关系,就可以判断a,b,c的大小关系.
    【详解】
    解:依图得3b<2a,
    ∴a>b,
    ∵2c=b,
    ∴b>c,
    ∴a>b>c
    故选C.
    本题考查了一元一次不等式的应用,解题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.
    4、C
    【解析】
    根据题意得:a=4,b=-2,所以B(0,4),C(0,-2),则△ABC的面积为
    故选C.
    5、D
    【解析】
    由一次函数经过(-3,2),故将x=-3,y=2代入一次函数解析式中,得到关于k的方程,求出方程的解即可得到k的值.
    【详解】
    由一次函数y=kx+17的图象经过点(-3,2),
    故将x=-3,y=2代入一次函数解析式得:2=-3k+17,
    解得:k=1,
    则k的值为1.
    故选D.
    此题考查了待定系数法求一次函数解析式,灵活运用待定系数法是解本题的关键.
    6、A
    【解析】
    分析:根据二次根式有意义的条件可得a-1≥0,再解不等式即可.
    详解:由题意得:a-1≥0,
    解得:a≥1,
    故选A.
    点睛:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
    7、C
    【解析】
    先求得分式方程的解(含m的式子),然后根据解是正数可知m+2>0,从而可求得m>-2,然后根据分式的分母不为0,可知x≠1,即m+2≠1.
    【详解】
    将分式方程转化为整式方程得:1x+m=3x-2
    解得:x=m+2.
    ∵方程得解为正数,所以m+2>0,解得:m>-2.
    ∵分式的分母不能为0,
    ∴x-1≠0,
    ∴x≠1,即m+2≠1.
    ∴m≠-3.
    故m>-2且m≠-3.
    故选:C.
    本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m的不等式是解题的关键.
    8、B
    【解析】
    如图所示:
    ∵菱形的周长为20cm,
    ∴菱形的边长为5cm,
    ∵两邻角之比为1:2,
    ∴较小角为60°,
    ∴∠ABO=30°,AB=5cm,
    ∵最长边为BD,BO=AB⋅cs∠ABO=5×= (cm),
    ∴BD=2BO= (cm).
    故选B.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为1.
    【详解】
    解:∵菱形的两条对角线长分别是6和8,
    ∴这个菱形的面积为6×8÷2=1
    故答案为1
    此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.
    10、①③ ①④ ②④ ③④
    【解析】
    根据平行四边形的判定定理确定即可.
    【详解】
    解:如图,
    ①③:,, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
    ①④:,, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
    ②④:,, 四边形是平行四边形(一组对边平行且相等的四边形是平行四边形);
    ③④:, 四边形是平行四边形(两组对边分别平行的四边形是平行四边形);
    所以能判定四边形是平行四边形的组合是①③或①④或②④或③④.
    故答案为:①③或①④或②④或③④.
    本题考查了平行四边形的判定定理,一组对边平行且相等的四边形是平行四边形;两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形,灵活选用条件及合适的判定定理是解题的关键.
    11、a>1且a≠2
    【解析】
    分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,
    根据题意得:a﹣1>0,解得:a>1.
    又当x=1时,分式方程无意义,∴把x=1代入x=a﹣1得a=2.
    ∴要使分式方程有意义,a≠2.
    ∴a的取值范围是a>1且a≠2.
    12、1
    【解析】
    直接利用众数的定义得出答案.
    【详解】
    ∵7,1,1,4,1,8,8,中1出现的次数最多,
    ∴这组数据的众数是:1.
    故答案为:1.
    本题主要考查了众数的定义,解题的关键是掌握众数的定义:一组数据中,出现次数最多的数就叫这组数据的众数.
    13、
    【解析】
    试题解析:∵AD∥BC,
    ∴∠EDB=∠CBD,又∠EBD=∠CBD,
    ∴∠EBD=∠EDB,
    ∴EB=ED,又BC′=BC=AD,
    ∴EA=EC′,
    在Rt△EC′D中,
    DE2=EC′2+DC′2,即DE2=(8-DE)2+62,
    解得DE=.
    三、解答题(本大题共5个小题,共48分)
    14、(1)12;(2)证明见详解;(3)或t=4s.
    【解析】
    (1)由勾股定理求出AD即可;
    (2)由等腰三角形的性质和平行线的性质得出∠PBQ=∠PQB,再由等腰三角形的判定定理即可得出结论;
    (3)分两种情况:①当点M在点D的上方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AD-AM=12-4t,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可;
    ②当点M在点D的下方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AM-AD=4t-12,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可.
    【详解】
    (1)解:∵BD⊥AC,
    ∴∠ADB=90°,
    ∴(cm),
    (2)如图所示:
    ∵AB=AC,
    ∴∠ABC=∠C,即∠PBQ=∠C,
    ∵PQ∥AC,
    ∴∠PQB=∠C,
    ∴∠PBQ=∠PQB,
    ∴PB=PQ;
    (3)分两种情况:
    ①当点M在点D的上方时,如图2所示:
    根据题意得:PQ=BP=t,AM=4t,AD=12,
    ∴MD=AD-AM=12-4t,
    ∵PQ∥AC,
    ∴PQ∥MD,
    ∴当PQ=MD时,四边形PQDM是平行四边形,
    即:当t=12-4t,时,四边形PQDM是平行四边形,
    解得:(s);
    ②当点M在点D的下方时,如图3所示:
    根据题意得:PQ=BP=t,AM=4t,AD=12,
    ∴MD=AM-AD=4t-12,
    ∵PQ∥AC,
    ∴PQ∥MD,
    ∴当PQ=MD时,四边形PQDM是平行四边形,
    即:当t=4t-12时,四边形PQDM是平行四边形,
    解得:t=4(s);
    综上所述,当或t=4s时,以P、Q、D、M为顶点的四边形为平行四边形.
    本题是四边形综合题目,考查了平行四边形的判定、等腰三角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,熟练掌握平行四边形的判定方法,进行分类讨论是解决问题(3)的关键.
    15、见解析
    【解析】
    根据全等三角形的性质得到AB∥DE且AB=DE,即可证明四边形ABED是平行四边形.
    【详解】
    ∵△ABC≌△DEF
    ∴∠B=∠DEF,AB=DE
    ∴AB∥DE.
    ∴AB=DE,AB∥DE
    ∴四边形ABED是平行四边形.
    此题主要考查平行四边形的判定,解题的关键是熟知全等三角形的性质及平行四边形的判定定理.
    16、 (1)见解析; (2)四边形的周长为12.
    【解析】
    (1)根据三角形的中位线的性质得到DF∥BC,EF∥AB,根据平行四边形的判定定理即可得到结论;
    (2)根据直角三角形的性质得到DF=DB=DA=AB=3,推出四边形BEFD是菱形,于是得到结论.
    【详解】
    (1)∵分别是的中点,
    ∴,
    ∴四边形是平行四边形.
    (2)∵,是的中点,,
    ∴.
    ∴四边形是菱形.
    ∵,
    ∴四边形的周长为12.
    本题考查了平行四边形的性质和判定,菱形的判定和性质,三角形的中位线的性质,熟练掌握平行四边形的性质是解题的关键.
    17、方程的另一根是2,m=3或m=3;
    【解析】
    试题分析:根据一元二次方程的解的定义,将x=-3代入关于x的一元二次方程x3-6x+m3-3m-5=0=0,求得(m3-3m-5)的值;然后将其代入原方程,通过因式分解法求得方程的另一根即可.
    试题解析:设方程的另一根为x3.
    ∵关于x的一元二次方程x3-6x+m3-3m-5=0的一个根是-3,
    ∴x=-3满足关于x的一元二次方程x3-6x+m3-3m-5=0,
    ∴(-3)3-6×(-3)+m3-3m-5=0,即m3-3m+3=0,
    ∴(m-3)(m-3)=0,
    解得,m=3或m=3;
    -3+x3=6,
    解得,x3=2.
    ∴方程的另一根是2,m=3或m=3;
    考点:3.一元二次方程的解,3.解一元二次方程-因式分解法
    18、(1);(2)的面积为2;(3)符合条件的点共有3个:,,
    【解析】
    (1)直线l1交于点D,且点D的纵坐标为4,则4=2x+2,解得:x=1,故点D(1,4),即可求解;
    (2)将点B、D的坐标代入y=kx+b,即可求解;
    (3)分AB是平行四边形的一条边、AB是平行四边形的对角线两种情况,分别求解.
    【详解】
    (1)把代入得:
    当时,
    不等式的解集是
    (2)把、代入得:
    直线的解析式是:

    由知:
    的面积为2
    (3),,
    以、、、为顶点的四边形是平行四边形
    由平移可知:,,
    符合条件的点共有3个:,,
    本题为一次函数综合运用题,涉及到平行四边形的基本性质、求解不等式等知识点,其中(3),要注意分类求解,避免遗漏.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    分析:首先将分式的分子和分母进行因式分解,然后进行约分化简得出答案.
    详解:原式=.
    点睛:本题主要考查的是分式的化简问题,属于基础题型.学会因式分解是解决这个问题的关键.
    20、y=﹣1x+1.
    【解析】
    由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.
    【详解】
    ∵点P(1,2)关于x轴的对称点为P′,
    ∴P′(1,﹣2),
    ∵P′在直线y=kx+3上,
    ∴﹣2=k+3,解得:k=﹣1,
    则y=﹣1x+3,
    ∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.
    故答案为y=﹣1x+1.
    考点:一次函数图象与几何变换.
    21、17或-7
    【解析】
    利用完全平方公式的结构特征判断即可确定出k的值.
    【详解】
    解:∵二次三项式4x2-(k-5)x+9是完全平方式,
    ∴k-5=±12,
    解得:k=17或k=-7,
    故答案为:17或-7
    此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
    22、720°
    【解析】
    根据多边形的外角和等于360°,可求出这个多边形的边数,进而,求出这个多边形的内角和.
    【详解】
    ∵一个多边形的每一个外角都等于60°,
    又∵多边形的外角和等于360°,
    ∴这个多边形的边数=360°÷60°=6,
    ∴这个多边形的内角和=,
    故答案是:720°.
    本题主要考查多边形的外角和等于360°以及多边形的内角和公式,掌握多边形的外角和等于360°是解题的关键.
    23、1
    【解析】
    解:根据三角形的中位线定理可得DE=AC,EF=AB,DF=BC
    所以△DEF的周长为△ABC的周长的一半,即△DEF的周长为1
    故答案为:1.
    本题考查三角形的中位线定理.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2);(3)线段的中点的运动路径长为.
    【解析】
    (1)如图1中,证明△ABE≌△ECF(AAS),即可解决问题.
    (2)如图2中,延长DF,BC交于点N,过点F作FM⊥BC于点M.证明△EFM≌△DNC(AAS),设NC=FM=x,利用勾股定理构建方程即可解决问题.
    (3)如图3中,在BC上截取BM=BA,连接AM,MF,取AM的中点H,连接HQ.由△ABE∽△AMF,推出∠AMF=∠ABE=90°,由AQ=FQ,AH=MH,推出,HQ∥FM,推出∠AHQ=90°,推出点Q的运动轨迹是线段HQ,求出MF的长即可解决问题.
    【详解】
    (1)如图1中,
    四边形是矩形,

    ,,
    ,,



    (2)如图2中,延长,交于点,过点作于点.
    同理可证,
    设,则,
    ,,



    ,,,
    即在中,,
    在中,,
    在中,,
    即,解得或(舍弃),即,
    (3)如图3中,在上截取,连接,,取的中点,连接.




    ,,
    ,,
    ,,

    点的运动轨迹是线段,
    当点从点运动到点时,,


    线段的中点的运动路径长为.
    本题考查了全等三角形、勾股定理、相似三角形,掌握矩形的性质及全等三角形的性质和判定、利用勾股定理列方程、相似三角形的性质是解题的关键.
    25、(1);(2)四边形为菱形,理由详见解析;(3)以为顶点的四边形是平行四边形时,点坐标或或
    【解析】
    (1)根据题意求得点E的坐标,再代入,把代入得到,即可解答
    (2)先由折叠的性质得出,由平行线的性质得出 ,即四边形为菱形.
    (3)为顶点的四边形是平行四边形时,点坐标或或.
    【详解】
    解:(1)如图1中,
    ,是由翻折得到,

    在中,,
    ,设,
    在中,,解得,

    设直线的解析式为,把代入得到,
    直线的解析式为.
    (2)如图2中,四边形为菱形,
    理由:是由翻折得到,
    ,.

    ,而
    .四边形为菱形.
    (3)以为顶点的四边形是平行四边形时,
    点坐标或或.
    本题考查四边形综合,根据题意做辅助线和判断等量关系列出方程是解题关键.
    26、(1)见解析;(2)见解析.
    【解析】
    分析:(1)4在网格线上,3是直角边为3的直角三角形的斜边,是直角边分别为1和3的直角三角形的斜边;(2)先构造一个直角边为2的等腰直角三角形,以此为基础再构造平行四边形.
    详解:(1)图(1)即为所求;
    (2)图(2)即为所求.
    点睛:本题考查了勾股定理,在格点中,可结合网格中的直角构造直角三角形,一般有理数可用网格线表示,无理数可表示为直角三角形的斜边,勾股定理确定它的两条直角边.
    题号





    总分
    得分
    成绩(分)
    20
    22
    24
    26
    28
    30
    人数(人)
    1
    5
    4
    10
    15
    10

    相关试卷

    重庆北碚区2024-2025学年九上数学开学学业质量监测模拟试题【含答案】:

    这是一份重庆北碚区2024-2025学年九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省义乌市三校2024-2025学年九上数学开学学业质量监测模拟试题【含答案】:

    这是一份浙江省义乌市三校2024-2025学年九上数学开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省海曙区五校联考2024年九上数学开学学业质量监测模拟试题【含答案】:

    这是一份浙江省海曙区五校联考2024年九上数学开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map