浙江省台州市天台县2025届九上数学开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若反比例函数的图象经过点,则该反比例函数的图象位于( )
A.第一、二象限B.第二、三象限C.第二、四象限D.第一、三象限
2、(4分)如果一个等腰三角形的两边长为4、9,则它的周长为( )
A.17B.22C.17或22D.无法计算
3、(4分)如图,在中,,,,为边上一动点,于点,于点,则的最小值为( )
A.2.4B.3C.4.8D.5
4、(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:
表中表示零件个数的数据中,众数是( )
A.5个B.6个C.7个D.8个
5、(4分)已知二次函数y= 2x2+8x-1的图象上有点A(-2,y1),B(-5,y2),C(-1,y3),则y1、y2、y3的大小关系为( )
A.B.C.D.
6、(4分)如图,在中,点分别在边,,上,且,.下列四个判断中,不正确的是( )
A.四边形是平行四边形
B.如果,那么四边形是矩形
C.如果平分平分∠BAC,那么四边形 AEDF 是菱形
D.如果AD⊥BC 且 AB=AC,那么四边形 AEDF 是正方形
7、(4分)已知 是一元二次方程 x2 x 1 0 较大的根,则下面对 的估计正确的是( )
A.0 1
B.1 1.5
C.1.5 2
D.2 3
8、(4分)若解方程会产生增根,则m等于( )
A.-10B.-10或-3C.-3D.-10或-4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.
10、(4分)要使二次根式有意义,则的取值范围是________.
11、(4分)两个相似三角形最长边分别为10cm和25cm,它们的周长之差为60cm,则这两个三角形的周长分别是。
12、(4分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:
根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是_____.
13、(4分)如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某中学开学初到商场购买A.B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元.已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元
(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?
(2)学校为了响应“足球进校园”的号召,决定再次购进A.B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A.B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?
15、(8分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:
方案一:买一件甲种商品就赠送一件乙种商品;
方案二:按购买金额打八折付款.
某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.
(1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;
(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
16、(8分)如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,证:四边形AECF是平行四边形.
17、(10分)已知关于x的方程 (m-1)x-mx+1=0。
(1)证明:不论m为何值时,方程总有实数根;
(2)若m为整数,当m为何值时,方程有两个不相等的整数根。
18、(10分)为了解市民对“雾霾天气的主要原因”的认识,某调查公司随机抽查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.
调查结果扇形统计图
请根据图表中提供的信息解答下列问题:
(1)填空:__________,__________.扇形统计图中组所占的百分比为__________%.
(2)若该市人口约有100万人,请你估计其中持组“观点”的市民人数约是__________万人.
(3)若在这次接受调查的市民中,随机抽查一人,则此人持组“观点”的概率是__________.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)菱形的两条对角线相交于,若,,则菱形的周长是___.
20、(4分)如图,平行四边形ABCO的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c),则顶点坐标B的坐标为_________.
21、(4分)四边形的外角和等于 .
22、(4分)化简:________.
23、(4分)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高度为 1m,那么它的下部应设计的高度为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,1),交y轴于点B(1,n),且m,n满足+(n﹣12)2=1.
(1)求直线AB的解析式及C点坐标;
(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;
(3)如图2,点E(1,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.
25、(10分)如图,点E,F在矩形的边AD,BC上,点B与点D关于直线EF对称.设点A关于直线EF的对称点为G.
(1)画出四边形ABFE关于直线EF对称的图形;
(2)若∠FDC=16°,直接写出∠GEF的度数为 ;
(3)若BC=4,CD=3,写出求线段EF长的思路.
26、(12分)如图,正方形ABCD中,E是AD上任意一点,于F点,于G点.
求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
首先将点坐标代入函数解析式,即可得出的值,即可判定反比例函数所处的象限.
【详解】
解:∵ 反比例函数图象经过点,
∴
∴
∴该反比例函数图像位于第一、三象限,
故答案为D.
此题主要考查利用点坐标求出反比例函数解析式,即可判定其所在象限.
2、B
【解析】
求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
解:(1)若4为腰长,9为底边长,
由于4+4<9,则三角形不存在;
(2)若9为腰长,则符合三角形的两边之和大于第三边.
所以这个三角形的周长为9+9+4=1.
故选:B.
本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.
3、C
【解析】
根据三个角都是直角的四边形是矩形,得四边形EDFB是矩形,根据矩形的对角线相等,得EF=BD,则EF的最小值即为BD的最小值,根据垂线段最短,知:BD的最小值即等于直角三角形ABC斜边上的高.
【详解】
如图,连接BD.
∵在△ABC中,AB=8,BC=6,AC=10,
∴AB2+BC2=AC2,即∠ABC=90°.
又∵DE⊥AB于点E,DF⊥BC于点F,
∴四边形EDFB是矩形,
∴EF=BD.
∵BD的最小值即为直角三角形ABC斜边上的高,即4.8,
∴EF的最小值为4.8,
故选C.
此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.
4、C
【解析】
解:数字7出现了22次,为出现次数最多的数,故众数为7个,
故选C.
本题考查众数.
5、C
【解析】
先求出二次函数y= 2x2+8x-2的图象的对称轴,然后判断出A(-2,y2),B(-5,y2),C(-2,y2)在抛物线上的位置,再求解.
【详解】
解:∵二次函数y= 2x2+8x-2中a=2>0,
∴开口向上,对称轴为x==-2,
∵A(-2,y2)中x=-2,y2最小,
∵B(-5,y2),
∴点B关于对称轴的对称点B′横坐标是2,则有B′(2,y2),
因为在对称轴得右侧,y随x得增大而增大,故y2>y2.
∴y2>y2>y2.
故选:C.
本题考查二次函数图象上点的坐标特征,关键是掌握二次函数图象的性质.
6、D
【解析】
由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;
又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形
故A. B正确;
如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,
∴∠FAD=∠ADF,
∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形故C正确;
如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形,故D错误.
故选D
7、C
【解析】
先解一元二次方程方程,再求出的范围,即可得出答案.
【详解】
解:解方程x2-x-1=0得:.
∵α是x2-x-1=0较大的根,
∴.
∵2<<3,
∴3<1+<4,
∴<<2.
故选C.
本题考查解一元二次方程和估算无理数大小的知识,正确的求解方程和合理的估算是解题的关键.
8、D
【解析】
分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程求出m的值即可.
【详解】
去分母得:2x-2-5x-5=m,即-3x-7=m,
由分式方程有增根,得到(x+1)(x-1)=0,即x=1或x=-1,
把x=1代入整式方程得:m=-10,把x=-1代入整式方程得:m=-4,
故选:D.
考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
∵将△ABC绕点B顺时针旋转60°,得到△BDE,
∴△ABC≌△BDE,∠CBD=60°,
∴BD=BC=12cm,
∴△BCD为等边三角形,
∴CD=BC=BD=12cm,
在Rt△ACB中,AB===13,
△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),
故答案为1.
考点:旋转的性质.
10、x≥1
【解析】
根据二次根式被开方数为非负数进行求解.
【详解】
由题意知,,
解得,x≥1,
故答案为:x≥1.
本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.
11、40cm,100cm
【解析】设最长边为10cm的多边形周长为x,则最长边为24cm的多边形的周长为(x+60)cm.
∵周长之比等于相似比.
∴10/25 =x/(x+60).
解得x=40cm,x+60=100cm.
12、乙
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
∵S甲2=10.96,S乙2=5.96,S丙2=12.32,
∴S丙2>S甲2>S乙2,
∴包装茶叶的质量最稳定是乙包装机.
故答案为乙.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
13、32a
【解析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.
【详解】
如图所示:
∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=a,
∴A2B1=a,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4a,
A4B4=8B1A2=8a,
A5B5=16B1A2=16a,
以此类推:A6B6=32B1A2=32a.
故答案是:32a.
考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) A种足球50元,B种足球80元;(2)方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.
【解析】
(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球单价比A种足球贵30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;
(2)设第二次购买A种足球m个,则购买B种足球(50-m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论.
【详解】
(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,
依题意得:
,
解得: .
答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.
(2)设第二次购买A种足球m个,则购买B种足球(50−m)个,
依题意得: ,
解得:25⩽m⩽27.
故这次学校购买足球有三种方案:
方案一:购买A种足球25个,B种足球25个;
方案二:购买A种足球26个,B种足球24个;
方案三:购买A种足球27个,B种足球23个.
此题考查二元一次方程组的应用,一元一次不等式组的应用,解题关键在于根据题意列出方程.
15、(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.
【解析】
(1)根据方案即可列出函数关系式;
(2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.
解:(1) 得:;
得:;
(2)
,
因为w是m的一次函数,k=-4<0,
所以w随的增加而减小,m当m=20时,w取得最小值.
即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.
16、答案见解析
【解析】
首先连接AC交EF于点O,由平行四边形ABCD的性质,可知OA=OC,OB=OD,又因为BE=DF,可得OE=OF,即可判定AECF是平行四边形.
【详解】
证明:连接AC交EF于点O;
∵平行四边形ABCD
∴OA=OC,OB=OD
∵BE=DF,
∴OE=OF
∴四边形AECF是平行四边形.
此题主要考查平行四边形的判定定理,关键是找出对角线互相平分,即可解题.
17、(1)见解析;(2)m=0
【解析】
(1)分该方程为一元二次方程和一元一次方程展开证明即可。
(2)利用因式分解解该一元二次方程,求出方程的根,利用整数概念进行求值即可
【详解】
解:(1)当 时, 是关于x的一元二次方程。
∵不论m为何值时,(m﹣2)2≥0,
∴△≥0,
∴方程总有实数根;
当m=1时,是关于x的一元一次方程。
∴-x+1=0
∴x=1
∴方程有实数根x=1
∴不论m为何值时,方程总有实数根
(2)
分解因式得
解得:
∵方程有两个不相等的整数根
∴为整数,
∴ 且
∴m=0
本题考查了根的判别式,掌握方程与根的关系,及因式分解解一元二次方程,和整数的概念是解题的关键.
18、50 130 16% 28 0.26
【解析】
(1)求得总人数,然后根据百分比的定义即可求得;
(2)利用总人数100万,乘以所对应的比例即可求解;
(3)利用频率的计算公式即可求解.
【详解】
解:(1)总人数是:100÷20%=500(人),则m=500×10%=50(人),
C组的频数n=500﹣100﹣50﹣140﹣80=130(人),
E组所占的百分比是:×100%=16%;
故答案为:50,130,16%;
(2)100×=28(万人);
所以持D组“观点”的市民人数为28万人;
(3)随机抽查一人,则此人持C组“观点”的概率是.
答:随机抽查一人,则此人持C组“观点”的概率是.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力,以及列举法求概率.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.
【详解】
∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,
∴BO=OD=3,AO=OC=4,
∴AB==5,
故菱形的周长为1,
故答案为:1.
本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.
20、 (a+b,c)
【解析】
平行四边形的对边相等,B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,从而确定B点的坐标.
【详解】
∵四边形ABCO是平行四边形,
∴AO=BC,AO∥BC,
∴B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,
∵O,A,C的坐标分别是(0,0),(a,0),(b,c),
∴B点的坐标为(a+b,c).
故答案是:(a+b,c).
本题考查平行四边形的性质,平行四边形的对边相等,以及考查坐标与图形的性质等知识点.
21、360°.
【解析】
解:n(n≥3)边形的外角和都等于360°.
22、;
【解析】
直接进行约分化简即可.
【详解】
解:,
故答案为:.
此题考查约分,分子分母同除一个不为零的数,分式大小不变.
23、
【解析】
设雕像的下部高为x m,则上部长为(1-x)m,然后根据题意列出方程求解即可.
【详解】
解:设雕像的下部高为x m,则题意得:,
整理得:,
解得: 或 (舍去);
∴它的下部应设计的高度为.
故答案为:.
本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.
二、解答题(本大题共3个小题,共30分)
24、(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,1);(3)点P的坐标(,)
【解析】
(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;
(2)画出图象,由CD⊥AB知可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;
(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.
【详解】
解:(1)∵+(n﹣12)2=1,
∴m=6,n=12,
∴A(6,1),B(1,12),
设直线AB解析式为y=kx+b,
则有,解得,
∴直线AB解析式为y=-2x+12,
∵直线AB过点C(a,a),
∴a=-2a+12,∴a=4,
∴点C坐标(4,4).
(2)过点C作CD⊥AB交x轴于点D,如图1所示,
设直线CD解析式为y=x+b′,把点C(4,4)代入得到b′=2,
∴直线CD解析式为y=x+2,
∴点D坐标(-4,1).
(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,
图2
∵直线EC解析式为y=x-2,直线CF解析式为y=-x+,
∵×(-)=-1,
∴直线CE⊥CF,
∵EC=2,CF=2,
∴EC=CF,
∴△FCE是等腰直角三角形,
∴∠FEC=45°,
∵直线FE解析式为y=-5x-2,
由解得,
∴点P的坐标为().
本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F(-2,8)是解题的突破口.
25、(1)见解析;(2)127°;(3)见解析.
【解析】
(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
(2)利用翻折变换的性质结合平行线的性质得出∠1度数进而得出答案;
(3)利用翻折变换的性质结合勾股定理得出答案.
【详解】
(1)如图所示:
(2)∵∠FDC=16°,
∴∠DFC=74°,
由对称性得,∠1=∠2=
∵AD∥BC,
∴∠AEF=∠GEF=180°-53°=127°;
故答案为:127°.
(3)思路:
a.连接BD交EF于点O.
b.在Rt△DFC中,设FC=x,则FD=4-x,由勾股定理,求得FD长;
c.Rt△BDC中,勾股可得BD=5,由点B与点D的对称性可得OD的长;
d.在Rt△DFO中,同理可求OF的长,可证EF=2OF,求得EF的长.
此题主要考查了翻折变换以及矩形的性质,正确掌握翻折变换的性质是解题关键.
26、证明见解析
【解析】
根据于F点,于G点,可得,根据四边形ABCD是正方形,可得,再根据,,可得:
,在和中,由,可判定≌,根据全等三角形的性质可得:.
【详解】
证明:于F点,于G点,
,
四边形ABCD是正方形,
,
,
又,
,
在和中,
,
≌,
,
本题主要考查正方形的性质和全等三角形的判定和性质,解决本题的关键是要熟练掌握正方形的性质和全等三角形的判定和性质.
题号
一
二
三
四
五
总分
得分
零件个数(个)
5
6
7
8
人数(人)
3
15
22
10
甲包装机
乙包装机
丙包装机
方差
10.96
5.96
12.32
组别
观点
频数(人数)
大气气压低,空气不流动
100
底面灰尘大,空气湿度低
汽车尾气排放
工厂造成的污染
140
其他
80
浙江省宁波北仑区东海实验学校2025届数学九上开学质量跟踪监视试题【含答案】: 这是一份浙江省宁波北仑区东海实验学校2025届数学九上开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省部分地区2024年九上数学开学质量跟踪监视试题【含答案】: 这是一份浙江省部分地区2024年九上数学开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份浙江省2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。