搜索
    上传资料 赚现金
    英语朗读宝

    浙江省绍兴县2024-2025学年九上数学开学达标检测试题【含答案】

    浙江省绍兴县2024-2025学年九上数学开学达标检测试题【含答案】第1页
    浙江省绍兴县2024-2025学年九上数学开学达标检测试题【含答案】第2页
    浙江省绍兴县2024-2025学年九上数学开学达标检测试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省绍兴县2024-2025学年九上数学开学达标检测试题【含答案】

    展开

    这是一份浙江省绍兴县2024-2025学年九上数学开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)二次根式中的取值范围是( )
    A.B.C.D.
    2、(4分)如图,线段AB两端点的坐标分别为A(-1,0),B(1,1),把线段AB平移到CD位置,若线段CD两端点的坐标分别为C(1,a),D(b,4),则a+b的值为( )
    A.7B.6C.5D.4
    3、(4分)一次函数的图象经过点,且的值随的增大而增大,则点的坐标可以为( )
    A.B.C.D.
    4、(4分)下列等式正确的是( )
    A.B.C.D.
    5、(4分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若AB=8,则CD的长是( )
    A.6B.5C.4D.3
    6、(4分)下列各组图形中不是位似图形的是()
    A.B.
    C.D.
    7、(4分)根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()
    A.1B.-1C.3D.-3
    8、(4分)如图,腰长为的等腰直角三角形绕直角顶点顺时针旋转得到,则图中阴影部分的面积等于( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若关于的方程的解是负数,则的取值范围是_______.
    10、(4分)平行四边形的对角线长分别是、,则它的边长的取值范围是__________.
    11、(4分)若与最简二次根式是同类二次根式,则__________.
    12、(4分)如图(1),已知小正方形的面积为1,把它的各边延长一倍得新正方形;把正方形边长按原法延长一倍得到正方形如图(2);以此下去⋯⋯,则正方形的面积为_________________.
    13、(4分)在平面直角坐标系 xOy 中,点O 是坐标原点,点 B 的坐标是3m, 4m 4,则OB 的最小值是____________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)先化简分式,后在,0,1,2中选择一个合适的值代入求值.
    15、(8分)某校为选拔一名选手参加“美丽江门,我为侨乡做代言”主题演讲比赛,经研究,按下图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整),下表是李明、张华在选拔赛中的得分情况:
    结合以上信息,回答下列问题:
    (1)求服装项目在选手考评中的权数;
    (2)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽江门,我为侨乡做代言”主题演讲比赛,并说明理由.
    16、(8分)(1)计算
    (2)解方程
    17、(10分)为预防传染病,某校定期对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量 与药物在空气中的持续时间成正比例;燃烧后,与成反比例(如图所示).现测得药物分钟燃完,此时教室内每立方米空气含药量为.根据以上信息解答下列问题:
    (1)分别求出药物燃烧时及燃烧后 关于的函数表达式.
    (2)当每立方米空气中的含药量低于 时,对人体方能无毒害作用,那么从消毒开始,在哪个时段消毒人员不能停留在教室里?
    (3)当室内空气中的含药量每立方米不低于 的持续时间超过分钟,才能有效杀灭某种传染病毒.试判断此次消毒是否有效,并说明理由.
    18、(10分)如图,在△ABC中,∠CAB的平分线AD与BC垂直平分线DE交于点D,DM⊥AB于点M,DN⊥AC,交AC的延长线于点N,求证:BM=CN.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知(﹣1,y1)(﹣2,y2)(, y3)都在反比例函数y=﹣的图象上,则y1 、y2 、 y3的大小关系是________ .
    20、(4分)不等式的正整数解有______个
    21、(4分)如图,已知点 A 是反比例函数 y 在第一象限图象上的一个动点,连接 OA,以OA 为长,OA为宽作矩形 AOCB,且点 C 在第四象限,随着点 A 的运动,点 C 也随之运动,但点 C 始终在反比例函数 y  的图象上,则 k 的值为________.
    22、(4分)如图,一次函数y=kx+b的图象与x轴的交点坐标为(1,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=1;④不等式kx+b>0的解集是x>1.其中说法正确的有_________(把你认为说法正确的序号都填上).
    23、(4分)一组数据3,2,4,5,2的众数是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平行四边形中,已知点在上,点在上,且.
    求证:.
    25、(10分)某校分别于2015年、2016年春季随机调查相同数量的学生,对学生做家务的情况进行调查(开展情况分为“基本不做”、“有时做”、“常常做”、“每天做”四种),绘制成部分统计图如下.
    请根据图中信息,解答下列问题:
    (1)a=______%,b=______%,“每天做”对应阴影的圆心角为______°;
    (2)请你补全条形统计图;
    (3)若该校2016年共有1200名学生,请你估计其中“每天做”家务的学生有多少名?
    26、(12分)甲、乙、丙三支排球队共同参加一届比赛,由抽签决定其中两队先打一场,然后胜者再和第三队(第一场轮空者)比赛,争夺冠军.
    (1)如果采用在暗盒中放形状大小完全一致的两黑一白三个小球,摸到白色小球的第一场轮空直接晋级进入决赛,那么甲队摸到白色小球的概率是多少?
    (2)如果采用三队各抛一枚硬币,当出现二正一反或二反一正时则由抛出同面的两个队先打一场,而出现三枚同面(同为正面或反面)时,则重新抛,试用“树形图”或表格表示第一轮抽签(抛币)所有可能的结果,并指出必须进行第二轮抽签的概率.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据二次根式有意义的条件可得出,再求x的取值范围即可.
    【详解】
    解:∵

    故选:D.
    本题考查的知识点是二次根式的定义,根据二次根式被开方数大于等于零解此题.
    2、B
    【解析】
    根据平移的性质分别求出a、b的值,计算即可.
    【详解】
    解:点A的横坐标为-1,点C的横坐标为1,
    则线段AB先向右平移2个单位,
    ∵点B的横坐标为1,
    ∴点D的横坐标为3,即b=3,
    同理,a=3,
    ∴a+b=3+3=6,
    故选:B.
    本题考查的是坐标与图形变化-平移,掌握平移变换与坐标变化之间的规律是解题的关键.
    3、C
    【解析】
    根据函数图象的性质判断y的值随x的增大而增大时,k>0,由此得到结论.
    【详解】
    ∵一次函数y=kx-1的图象的y的值随x值的增大而增大,
    ∴k>0,
    A、把点(-5,3)代入y=kx-1得到:k=-<0,不符合题意;
    B、把点(5,-1)代入y=kx-1得到:k=0,不符合题意;
    C、把点(2,1)代入y=kx-1得到:k=1>0,符合题意;
    D、把点(1,-3)代入y=kx-1得到:k=-2<0,不符合题意;
    故选C.
    考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.
    4、B
    【解析】
    根据平方根、算术平方根的求法,对二次根式进行化简即可.
    【详解】
    A.=2,此选项错误;
    B.=2,此选项正确;
    C. =﹣2,此选项错误;
    D.=2,此选项错误;
    故选:B.
    本题考查了二次根式的化简和求值,是基础知识比较简单.
    5、C
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半解答.
    【详解】
    解:,是的中点,

    故选:.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
    6、D
    【解析】
    根据位似图形的定义解答即可,注意排除法在解选择题中的应用.
    【详解】
    根据位似图形的定义,可得A,B,C是位似图形,B与C的位似中心是交点,A的位似中心是圆心;D不是位似图形.
    故选D.
    本题考查了位似图形的定义.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.
    7、A
    【解析】
    设一次函数的解析式为y=kx+b,将表格中的对应的x,y的值(-2,3),(1,0)代入得:
    ,解得:.
    ∴一次函数的解析式为y=-x+1.
    当x=0时,得y=1.故选A.
    8、D
    【解析】
    根据旋转的性质求出的值,根据勾股定理和阴影部分面积等于△ADB的面积减△BEF的面积,即可求得阴影部分的面积.
    【详解】
    旋转,





    设,则,





    故选D.
    本题考查了阴影部分的面积问题,掌握旋转的性质和三角形的面积公式是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、且
    【解析】
    把方程进行通分求出方程的解,再根据其解为负数,从而解出a的范围.
    【详解】
    把方程移项通分得,
    解得x=a−6,
    ∵方程的解是负数,
    ∴x=a−6<0,
    ∴a<6,
    当x=−2时,2×(−2)+a=0,
    ∴a=1,
    ∴a的取值范围是:a<6且a≠1.
    故答案为:a<6且a≠1.
    此题主要考查解方程和不等式,把方程和不等式联系起来,是一种常见的题型,比较简单.
    10、
    【解析】
    根据平行四边形的性质:平行四边形的对角线互相平分.得两条对角线的一半分别是5,8;再根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.进行求解.
    【详解】
    根据平行四边形的性质,得对角线的一半分别是5和8.
    再根据三角形的三边关系,得.
    故答案为.
    本题考查了三角形的三边关系,掌握任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.
    11、3
    【解析】
    先化简,然后根据同类二次根式的概念进行求解即可.
    【详解】
    =2,
    又与最简二次根式是同类二次根式,
    所以a=3,
    故答案为3.
    本题考查了最简二次根式与同类二次根式,熟练掌握相关概念以及求解方法是解题的关键.
    12、1
    【解析】
    根据条件计算出图(1) 正方形A1B1C1D1的面积,同理求出正方形A2B2C2D2的面积,由此找出规律即可求出答案.
    【详解】
    图(1)中正方形ABCD的面积为1,把各边延长一倍后,每个小三角形的面积也为1,
    所以正方形A1B1C1D1的面积为5,
    图(2)中正方形A1B1C1D1的面积为5,把各边延长一倍后,每个小三角形的面积也为5,
    所以正方形A2B2C2D2的面积为52=25,
    由此可得正方形A5B5C5D5的面积为55=1.
    本题考查图形规律问题,关键在于列出各图形面积找出规律.
    13、
    【解析】
    先用勾股定理求出OB的距离,然后用配方法即可求出最小值.
    【详解】
    ∵点 B 的坐标是3m, 4m 4,O是原点,
    ∴OB=,
    ∵,
    ∴OB,
    ∴OB的最小值是,
    故答案为.
    本题考查勾股定理求两点间距离,其中用配方法求出最小值是本题的重难点.
    三、解答题(本大题共5个小题,共48分)
    14、,.
    【解析】
    先对进行化简,再选择-1,0,1代入计算即可.
    【详解】
    原式
    因为且
    所以当时,原式
    当时,原式
    考查了整式的化简求值,解题关键是熟记分式的运算法则.
    15、(1)服装在考评中的权数为10%;(2)选择李明参加比赛,理由是李明的总成绩高.
    【解析】
    (1)所有项目所占的总权数为100%,从100%中减去其它几个项目的权数即可,
    (2)计算李明、张华的总成绩,即加权平均数后,比较得出答案.
    【详解】
    (1)服装在考评中的权数为:1-20%-30%-40%=10%,
    答:服装在考评中的权数为10%.
    (2)选择李明参加比赛,
    李明的总成绩为:85×10%+70×20%+80×30%+85×40%=80.5分,
    张华的成绩为:90×10%+75×20%+75×30%+80×40%=78.5分,
    因为80.5>78.5,
    所以李明成绩较好,选择李明成绩比赛.
    答:选择李明参加比赛,理由是李明的总成绩高.
    考查加权平均数的意义及计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是解决问题的关键.
    16、(1)原式=;(2)x1=-1,x2=2.5;
    【解析】
    (1)根据负整数指数幂的意义与二次根式的性质分别化简得出答案;
    (2)整理后直接利用公式法或十字相乘法解方程.
    【详解】
    解:(1)原式=
    =
    = ;
    (2)
    整理得:
    (x+1)(2x-5)=0
    ∴ , .
    故答案为:1)原式=;(2) , .
    本题考查二次根式的混合运算和解一元二次方程,解题的关键是熟练运用一元二次方程的解法和二次根式的性质.
    17、(1),;(2)第分至分内消毒人员不可以留在教室里;(3)本次消毒有效.
    【解析】
    (1)设燃烧时药物燃烧后y与x之间的解析式y=ax,药物燃烧后y与x之间的解析式y=,把点(10,8)代入即可;
    (2)把y=1.6代入函数解析式,求出相应的x;
    (3)把y=3.2代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与20进行比较,大于等于20就有效;
    【详解】
    (1)设燃烧时药物燃烧后y与x之间的解析式y=ax,点(10,8)代入,得
    10a=8,
    ∴a=,
    ∴;
    药物燃烧后y与x之间的解析式y=,把点(10,8)代入,得
    k=80,
    ∴;
    (2)把代入可得
    把代入可得
    根据图象,当时,
    即从消毒开始后的第分至分内消毒人员不可以留在教室里.
    (3)把代入可得
    把代入可得
    本次消毒有效.
    本题考查一次函数、反比例函数的定义、性质与运用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,进一步根据题意求解答案.
    18、见解析
    【解析】
    根据角平分线的性质和线段垂直平分线的性质可得到DM=DN,DB=DC,根据HL证明△DMB≌△DNC,即可得出BM=CN.
    【详解】
    证明:连接BD,
    ∵AD是∠CAB的平分线,DM⊥AB,DN⊥AC,
    ∴DM=DN,
    ∵DE垂直平分线BC,
    ∴DB=DC,
    在Rt△DMB和Rt△DNC中,

    ∴Rt△DMB≌Rt△DNC(HL),
    ∴BM=CN.
    本题主要考查了角平分线的性质和线段垂直平分线的性质以及全等三角形的判定与性质,熟悉角平分线的性质和线段垂直平分线的性质是解决问题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.
    【详解】
    ∵反比例函数y=−2x中,k=−2

    相关试卷

    山东省冠县联考2024-2025学年九上数学开学达标检测模拟试题【含答案】:

    这是一份山东省冠县联考2024-2025学年九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江省台州市书生中学数学九上开学达标检测模拟试题【含答案】:

    这是一份2024-2025学年浙江省台州市书生中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江省宁波市鄞州区实验中学数学九上开学达标检测试题【含答案】:

    这是一份2024-2025学年浙江省宁波市鄞州区实验中学数学九上开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map