|试卷下载
终身会员
搜索
    上传资料 赚现金
    天津市南开区名校2024-2025学年数学九上开学综合测试模拟试题【含答案】
    立即下载
    加入资料篮
    天津市南开区名校2024-2025学年数学九上开学综合测试模拟试题【含答案】01
    天津市南开区名校2024-2025学年数学九上开学综合测试模拟试题【含答案】02
    天津市南开区名校2024-2025学年数学九上开学综合测试模拟试题【含答案】03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    天津市南开区名校2024-2025学年数学九上开学综合测试模拟试题【含答案】

    展开
    这是一份天津市南开区名校2024-2025学年数学九上开学综合测试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知一次函数的图象经过点A,且函数值y随x的增大而减小,则点A的坐标可能是
    A.B.C.D.
    2、(4分)我校是教育部的全国青少年校园足球“满天星”训练基地,旨在“踢出快乐,拼出精彩”,如图,校园足球图片正中的黑色正五边形的内角和是( )
    A.B.C.D.
    3、(4分)如图,甲、丙两地相距500km,一列快车从甲地驶往丙地,途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发,同向而行,折线ABCD表示两车之间的距离y(km)与慢车行驶的时间为x(h)之间的函数关系.根据图中提供的信息,下列说法不正确的是( )
    A.甲、乙两地之间的距离为200 kmB.快车从甲地驶到丙地共用了2.5 h
    C.快车速度是慢车速度的1.5倍D.快车到达丙地时,慢车距丙地还有50 km
    4、(4分)已知32m=8n,则m、n满足的关系正确的是( )
    A.4m=nB.5m=3nC.3m=5nD.m=4n
    5、(4分)若△ABC∽△DEF且面积比为9:25,则△ABC与△DEF的周长之比为( )
    A.9:25B.3:25C.3:5D.2:5
    6、(4分)如图所示,是半圆的直径,点从点出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )
    A.B.C.D.
    7、(4分)在一次英语单词听写比赛中共听写了16个单词,每听写正确1个得1分,最后全体参赛同学的听写成绩统计如下表:
    则听写成绩的众数和中位数分别是( ).
    A.15,14B.15,15
    C.16,15D.16,14
    8、(4分)一个直角三角形的两边长分别为5和12,则第三边的长为( )
    A.13B.14C.D.13或
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一组数据,,,,的平均数是2,那么另一组数据,,,,的平均数是______.
    10、(4分)如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________
    11、(4分)聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是_____.
    12、(4分)|1﹣|=_____.
    13、(4分)已知,则__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴的交点分别为A、B,直线y=﹣2x+12交x轴于C,两条直线的交点为D;点P是线段DC上的一个动点,过点P作PE⊥x轴,交x轴于点E,连接BP;
    (1)求△DAC的面积;
    (2)在线段DC上是否存在一点P,使四边形BOEP为矩形;若存在,写出P点坐标;若不存在,说明理由;
    (3)若四边形BOEP的面积为S,设P点的坐标为(x,y),求出S关于x的函数关系式,并写出自变量x的取值范围.
    15、(8分)为预防传染病,某校定期对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量 与药物在空气中的持续时间成正比例;燃烧后,与成反比例(如图所示).现测得药物分钟燃完,此时教室内每立方米空气含药量为.根据以上信息解答下列问题:
    (1)分别求出药物燃烧时及燃烧后 关于的函数表达式.
    (2)当每立方米空气中的含药量低于 时,对人体方能无毒害作用,那么从消毒开始,在哪个时段消毒人员不能停留在教室里?
    (3)当室内空气中的含药量每立方米不低于 的持续时间超过分钟,才能有效杀灭某种传染病毒.试判断此次消毒是否有效,并说明理由.
    16、(8分)为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图.按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入.(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE.(精确到0.1m)(参考数值,,)
    17、(10分)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立。
    (1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);
    (2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;
    (3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)
    18、(10分)如图,在平直角坐标系xOy中,直线与反比例函数的图象关于点
    (1)求点P的坐标及反比例函数的解析式;
    (2)点是x轴上的一个动点,若,直接写出n的取值范围.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知的平分线与的垂直平分线相交于点,,,垂足分别为,,,,则的长为__________.
    20、(4分)如果一个多边形的每一个外角都等于,则它的内角和是_________.
    21、(4分)如图,是根据四边形的不稳定性制作的边长均为的可活动菱形衣架,若墙上钉子间的距离,则=______度.
    22、(4分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,BC=8,AB=10,则△FCD的面积为__________.
    23、(4分)如图,在平面直角坐标系中,直线y=4x+4与x、y轴分别相交于点A、B,四边形ABCD是正方形,抛物线过C,D两点,且C为顶点,则a的值为_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0),将△ABC绕原点O顺时针旋转90°得到△A' B' C'.
    (1)画出△A’ B’ C’,并直接写出点A的对应点A' 的坐标;
    (2)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.
    25、(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.
    (1)根据题意,填写下表:
    (2)设甲快递公司收费y1元,乙快递公司收费y2元,分别写出y1,y2关于x的函数关系式;
    (3)当x>3时,小明应选择哪家快递公司更省钱?请说明理由.
    26、(12分)如图所示,已知一次函数的图象与轴,轴分别交于点,.以为边在第一象限内作等腰,且,.过作轴于点.的垂直平分线交于点,交轴于点.
    (1)求点的坐标;
    (2)连接,判定四边形的形状,并说明理由;
    (3)在直线上有一点,使得,求点的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.
    【详解】
    解:一次函数的函数值y随x的增大而减小,

    A、当,时,,解得,此点不符合题意,故本选项错误;
    B、当,时,,解得,此点符合题意,故本选项正确;
    C、当,时,,解得,此点不符合题意,故本选项错误;
    D、当,时,,解得,此点不符合题意,故本选项错误.
    故选:B.
    考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.
    2、C
    【解析】
    根据多边形内角和公式(n-2)×180°即可求出结果.
    【详解】
    解:黑色正五边形的内角和为:(5-2)×180°=540°,
    故选:C.
    本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.
    3、C
    【解析】
    根据两车同时出发,同向而行,所以点A即为甲、乙两地的距离;图中点B为y=0,即快慢两车的距离为0,所以B表示快慢两车相遇的时间;由图像可知慢车走300km,用了3小时,可求出慢车的速度,进而求出快车的速度;点C的横坐标表示快车走到丙地用的时间,根据快车与慢车的速度,可求出点C的坐标
    【详解】
    A、由图像分析得,点A即为甲、乙两地的距离,即甲、乙两地之间的距离为选项A是正确
    BC、由图像可知慢车走300km,用了3小时,则慢车的速度为100km/h,因为1h快车比慢车多走100km,故快车速度为200km/h,所以快车从甲地到丙地的时间=500200=2.5h,故选项B是正确的,快车速度是慢车速度的两倍,故选项C是错误的
    D、快车从甲地驶到丙地共用了2.5h,即点C的横坐标2.5,则慢车还剩0.5h才能到丙地,距离=0.5100=50km,故快车到达丙地时,慢车距丙地还有50km,选项D是正确的
    故正确答案为C
    此题主要根据实际问题考查了一次函数的应用,解决此题的关键是根据函数图像,读懂题意,联系实际的变化,明确横轴和纵轴表示的意义
    4、B
    【解析】
    ∵32m=8n,
    ∴(25)m=(23)n,
    ∴25m=23n,
    ∴5m=3n.
    故选B.
    5、C
    【解析】
    根据相似三角形的面积的比等于相似比的平方先求出△ABC与△DEF的相似比,然后根据相似三角形的周长的比等于相似比解答即可.
    【详解】
    解:∵相似三角形△ABC与△DEF面积的比为9:21,
    ∴它们的相似比为3:1,
    ∴△ABC与△DEF的周长比为3:1.
    故选:C.
    本题主要考查了相似三角形面积的比等于相似比的平方,周长的比等于相似比的性质,熟记性质是解题的关键.
    6、D
    【解析】
    依题意,可以知道点P从O到A匀速运动时,OP的长s逐渐变大;在上运动时,长度s不变;从B到O匀速运动时,OP的长s逐渐变小直至为1.依此即可求解.
    【详解】
    解:可以看出从O到A逐渐变大,而弧AB中的半径不变,从B到O中OP逐渐减少直至为1.
    故选:D.
    此题考查了函数随自变量的变化而变化的问题,能够结合图形正确分析距离y与时间x之间的大小变化关系,从而正确选择对应的图象.
    7、C
    【解析】
    根据表格中的数据可知16出现的次数最多,从而可以得到众数,一共20个数据,中位数是第10个和第11个的平均数,本题得以解决.
    【详解】
    由表格可得,16出现的次数最多,所以听写成绩的众数是16;
    一共20个数据,中位数是第10个和第11个的平均数为5,即中位数为5,
    故选:C.
    考查了众数和中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.
    8、D
    【解析】
    本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.
    【详解】
    当12和5均为直角边时,第三边==13;
    当12为斜边,5为直角边,则第三边==,
    故第三边的长为13或.
    故选D.
    本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    由平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据,,,,的和,然后再用平均数的定义求新数据的平均数.
    【详解】
    一组数据,,,,的平均数是2,有,那么另一组数据,,,,的平均数是.
    故答案为1.
    本题考查的是样本平均数的求法及运用,解题的关键是掌握平均数公式:.
    10、6
    【解析】
    分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.
    详解:纸条的对边平行 , 即 AB ∥ CD,AD ∥ BC ,
    ∴ 四边形 ABCD 是平行四边形,
    ∵ 两张纸条的宽度都是 3 ,
    ∴S四边形ABCD=AB×3=BC×3 ,
    ∴AB=BC ,
    ∴ 平行四边形 ABCD 是菱形,即四边形 ABCD 是菱形.
    如图 , 过 A 作 AE⊥BC, 垂足为 E,
    ∵∠ABC=60∘ ,
    ∴∠BAE=90°−60°=30°,
    ∴AB=2BE ,
    在 △ABE 中 ,AB2=BE2+AE2 ,
    即 AB2=AB2+32 ,
    解得 AB=,
    ∴S四边形ABCD=BC⋅AE=×3=.
    故答案是:.
    点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.
    11、.
    【解析】
    首先正确数出所有的数字个数和9出现的个数;再根据频率=频数÷总数,进行计算.
    解:根据题意,知在数据中,共33个数字,其中11个9;
    故数字9出现的频率是.
    12、﹣1.
    【解析】
    根据差的绝对值是大数减小数,可得答案.
    【详解】
    |1﹣|=﹣1,
    故答案为﹣1.
    本题考查了实数的性质,差的绝对值是大数减小数.
    13、1
    【解析】
    直接利用二次根式非负性得出a,b的值,进而得出答案.
    【详解】
    ∵,
    ∴a=−1,b=1,
    ∴−1+1=1.
    故答案为:1.
    此题主要考查了非负数的性质,正确得出a,b的值是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)S△DAC=1;(2)存在, 点P的坐标是(5,2);(3)S=﹣x2+7x(4≤x<6).
    【解析】
    (1)想办法求出A、D、C三点坐标即可解决问题;
    (2)存在.根据OB=PE=2,利用待定系数法即可解决问题;
    (3)利用梯形的面积公式计算即可;
    【详解】
    (1)当y=0时, x+2=0,
    ∴x=﹣4,点A坐标为(﹣4,0)
    当y=0时,﹣2x+12=0,
    ∴x=6,点C坐标为(6,0)
    由题意,解得,
    ∴点D坐标为(4,4)
    ∴S△DAC=×10×4=1.
    (2)存在,∵四边形BOEP为矩形,
    ∴BO=PE
    当x=0时,y=2,点B坐标为(0,2),
    把y=2代入y=﹣2x+12得到x=5,
    点P的坐标是(5,2).
    (3)∵S=(OB+PE)•OE
    ∴S=(2﹣2x+12)•x=﹣x2+7x(4≤x<6).
    本题考查一次函数综合题、二元一次方程组、矩形的判定和性质、梯形的面积公式等知识,解题的关键是熟练掌握待定系数法,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.
    15、(1),;(2)第分至分内消毒人员不可以留在教室里;(3)本次消毒有效.
    【解析】
    (1)设燃烧时药物燃烧后y与x之间的解析式y=ax,药物燃烧后y与x之间的解析式y=,把点(10,8)代入即可;
    (2)把y=1.6代入函数解析式,求出相应的x;
    (3)把y=3.2代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与20进行比较,大于等于20就有效;
    【详解】
    (1)设燃烧时药物燃烧后y与x之间的解析式y=ax,点(10,8)代入,得
    10a=8,
    ∴a=,
    ∴;
    药物燃烧后y与x之间的解析式y=,把点(10,8)代入,得
    k=80,
    ∴;
    (2)把代入可得
    把代入可得
    根据图象,当时,
    即从消毒开始后的第分至分内消毒人员不可以留在教室里.
    (3)把代入可得
    把代入可得
    本次消毒有效.
    本题考查一次函数、反比例函数的定义、性质与运用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,进一步根据题意求解答案.
    16、2.3m
    【解析】
    根据锐角三角函数的定义,可在Rt△ACD中解得BD的值,进而求得CD的大小;在Rt△CDE中,利用正弦的定义,即可求得CE的值.
    【详解】
    在Rt△ABD中,∠BAD=18°,AB=9m,
    ∴BD=AB×tan18°≈2.92m,
    ∴CD=BD-BC=2.92-0.5=2.42m,
    在Rt△CDE中,∠CDE=72°,CD≈2.42m,
    ∴CE=CD×sin72°≈2.3m.
    答:CE的高为2.3m.
    本题考查了解直角三角形的应用,解直角三角形的应用是中考必考题,一般难度不大,正确作出辅助线构造直角三角形是解题关键.
    17、(1)①PE=PB,②PE⊥PB;(2)成立,理由见解析(3)①PE=PB,②PE⊥PB.
    【解析】
    (1)根据正方形的性质和全等三角形的判定定理可证△PDC≅△PBC,推出PB=PD=PE,∠PDE=180°−∠PBC=∠PED,求出∠PEC+∠PBC=180°,求出∠EPB的度数即可
    (2)证明方法同(1),可得PE=PB,PE⊥PB
    (3)证明方法同(1),可得PE=PB,PE⊥PB
    【详解】
    (1)①PE=PB,②PE⊥PB.
    (2)(1)中的结论成立。
    ①∵四边形ABCD是正方形,AC为对角线,
    ∴CD=CB,∠ACD=∠ACB,
    又PC=PC,
    ∴△PDC≌△PBC,
    ∴PD=PB,
    ∵PE=PD,
    ∴PE=PB,
    ②:由①,得△PDC≌△PBC,
    ∴∠PDC=∠PBC.
    又∵PE=PD,
    ∴∠PDE=∠PED.
    ∴∠PDE+∠PDC=∠PEC+∠PBC=180°,
    ∴∠EPB=360°−(∠PEC+∠PBC+∠DCB)=90°,
    ∴PE⊥PB.
    (3)如图所示:
    结论:①PE=PB,②PE⊥PB.
    此题考查正方形的性质,垂线,全等三角形的判定与性质,解题关键在于利用全等三角形的性质进行求证
    18、(1);(2)
    【解析】
    (1)先把P(1,a)代入y=x+2,求出a的值,确定P点坐标为(1,3),然后把P(1,3)代入y=求出k的值,从而可确定反比例函数的解析式;
    (2)过P作PB⊥x轴于点B,则B点坐标为(1,0),PB=3,然后利用PQ≤1,由垂线段最短可知,PQ≥3,然后利用PQ≤1,在直角三角形PBQ中,PQ=1时,易确定n的取值范围,要注意分点Q在点B左右两种情况.当点Q在点B左侧时,点Q坐标为(-3,0);当点Q在点B右侧时,点Q坐标为(1,0),从而确定n的取值范围.
    【详解】
    解:(1)∵直线与反比例函数的图象交于点,
    ∴.
    ∴点P的坐标为.
    ∴.
    ∴反比例函数的解析式为.
    (2)过P作PB⊥x轴于点B,
    ∵点P的坐标为(1,3),Q(n,0)是x轴上的一个动点,PQ≤1,
    由勾股定理得BQ≤,
    ∴1-4=-3,1+4=1,
    ∴n的取值范围为-3≤n≤1.
    本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了勾股定理的应用.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    连接DC、DB,根据中垂线的性质即可得到DB=DC,根据角平分线的性质即可得到DE=DF,从而即可证出△DEB≌DFC,从而得到BE=CF,再证△AED≌△AFD,即可得到AE=AF,最后根据,即可求出BE.
    【详解】
    解:如图所示,连接DC、DB,
    ∵DG垂直平分BC
    ∴DB=DC
    ∵AD平分,,
    ∴DE=DF,∠DEB=∠DFC=90°
    在Rt△DEB和Rt△DFC中,
    ∴Rt△DEB≌Rt△DFC
    ∴BE=CF
    在Rt△AED和Rt△AFD中,
    ∴Rt△AED≌Rt△AFD
    ∴AE=AF
    ∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE
    ∵,
    ∴BE=(AB-AC)=1.5.
    故答案为:1.5.
    此题考查的是垂直平分线的性质、角平分线的性质和全等三角形的判定,掌握垂直平分线上的点到线段两个端点的距离相等、角平分线上的点到角两边的距离相等和用HL证全等三角形是解决此题的关键.
    20、
    【解析】
    根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n-2)•180°,代入公式就可以求出内角和.
    【详解】
    解:多边形边数为:360°÷30°=12,
    则这个多边形是十二边形;
    则它的内角和是:(12-2)•180°=1°.
    故答案为:1.
    本题考查多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
    21、1
    【解析】
    根据题意可得,AB和菱形的两边构成的三角形是等边三角形,可得∠A=60°,所以,∠1=1°
    【详解】
    解:如图,连接AB.
    ∵菱形的边长=25cm,AB=BC=25cm
    ∴△AOB是等边三角形
    ∴∠AOB=60°,
    ∴∠AOD=1°
    ∴∠1=1°.
    故答案为:1.
    本题主要考查菱形的性质及等边三角形的判定的运用.
    22、2.
    【解析】
    根据题意可证△ADE≌△ACD,可得AE=AC=2,CD=DE,根据勾股定理可得DE,CD的长,再根据勾股定理可得FC的长,即可求△FCD的面积.
    【详解】
    ∵AD是∠BAC的平分线,DE⊥AB于E,∠C=90°
    ∴CD=DE
    ∵CD=DE,AD=AD
    ∴Rt△ACD≌Rt△ADE
    ∴AE=AC
    ∵在Rt△ABC中,AC==2
    ∴AE=2
    ∴BE=AB-AE=4
    ∵在Rt△DEB中,BD1=DE1+BE1.
    ∴DE1+12=(8-DE)1
    ∴DE=3 即BD=5,CD=3
    ∵BD=DF
    ∴DF=5
    在Rt△DCF中,FC==4
    ∴△FCD的面积为=×FC×CD=2
    故答案为2.
    本题考查了全等三角形的性质和判定,角平分线的性质,勾股定理,关键是灵活运用这些性质解决问题.
    23、-1
    【解析】
    如图作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,利用三角形全等,求出点C、点D和点F坐标即可解决问题.
    【详解】
    解:如图,作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F.
    ∵直线y=-1x+1与x轴、y轴分别交于A、B两点,
    ∴点B(0,1),点A(1,0),△ABO≌△DAM
    ∵四边形ABCD是正方形,
    ∴AB=AD=DC=BC,∠BAD=90°,
    ∵∠BAO+∠ABO=90°,∠BAO+∠DAM=90°,
    ∴∠ABO=∠DAM,
    在△ABO和△DAM中,
    ,
    ∴△ABO≌△DAM,
    ∴AM=BO=1,DM=AO=1,
    同理可以得到:CF=BN=AO=1,DF=CN=BO=1,
    ∴点F(5,5),C(1,5),D(5,1),
    把C(1,1),D(5,1)代入得:
    ,解得:b=-9a-1,
    ∵C为顶点, ∴,即 ,解得:a=-1.
    故答案为-1.
    本题考查二次函数与一次函数的交点、正方形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,属于中考常考题型.
    二、解答题(本大题共3个小题,共30分)
    24、(1)画图见解析;(2),或.
    【解析】
    试题分析:(1)根据网格结构找出点A、B、C绕坐标原点O逆时针旋转90°对应点A′、B′、C′的位置,然后顺次连接即可;
    (2)根据平行四边形的对边平行且相等,分AB、BC、AC是对角线三种情况分别写出即可.
    试题解析:(1)如图所示△DEF为所求;
    (2)若AB是对角线,则点D(-7,3),
    若BC是对角线,则点D(-5,-3),
    若AC是对角线,则点D(3,3),
    故答案为或或 .
    25、(1)11,19,52,1;(2);y2=16x+3;(3)当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
    【解析】
    (1)根据甲、乙公司的收费方式,求出y值即可;
    (2)根据甲、乙公司的收费方式结合数量关系,找出y1、y2(元)与x(千克)之间的函数关系式;
    (3)x>3,分别求出y1>y2、y1=y2、y1<y2时x的取值范围,综上即可得出结论.
    【详解】
    解:(1)当x=0.5时,y甲=22×0.5=11;
    当x=1时,y乙=16×1+3=19;
    当x=3时,y甲=22+15×2=52;
    当x=3时,y甲=22+15×3=1.
    故答案为:11;19;52;1.
    (2)当0<x≤1时,y1=22x;
    当x>1时,y1=22+15(x-1)=15x+2.

    y2=16x+3(x>0);
    (3)当x>3时,
    当y1>y2时,有15x+2>16x+3,
    解得:x<3;
    当y2=y2时,有15x+2=16x+3,
    解得:x=3;
    当y1<y2时,有15x+2<16x+3,
    解得:x>3.
    ∴当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
    本题考查了一次函数的应用,解题的关键是:(1)根据甲、乙公司的收费方式求出y值;(2)根据甲、乙公司的收费方式结合数量关系,找出、(元)与x(千克)之间的函数关系式;(3)分情况考虑>、=、<时x的取值范围.
    26、(1);(2)四边形是矩形,理由详见解析;(3)点坐标为或.
    【解析】
    (1)根据一次函数解析式求出A,B坐标,证明△AOB≌△BDC(AAS),即可解决问题.
    (2)证明EG=CD.EG∥CD,推出四边形EGDC是平行四边形,再根据轴即可解决问题.
    (3)先求出,设M(1,m),构建方程即可解决问题.
    【详解】
    (1)当时,,∴.∴.
    当时,,∴.∴.
    ∵,∴.
    在和中,
    ∵,
    ∴.
    ∴.
    ∴.
    ∴.
    (2)∵是的垂直平分线,
    ∴点坐标为,点坐标为,∴.
    ∵,,
    ∴四边形是平行四边形.
    ∵轴,
    ∴平行四边形是矩形.
    (3)在中,,
    ∴,
    ∴.
    设点的坐标为,则.
    过作于,则.
    .
    解得:或.
    所以点坐标为或.
    本题属于一次函数综合题,考查了等腰三角形的性质,矩形的性质,一次函数的性质,矩形的判定和性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    题号





    总分
    得分
    批阅人
    成绩(分)
    12
    13
    14
    15
    16
    人数(个)
    1
    3
    4
    5
    7
    快递物品重量(千克)
    0.5
    1
    3
    4

    甲公司收费(元)
    22

    乙公司收费(元)
    11
    51
    67

    相关试卷

    天津市南开区天大附中2025届九上数学开学统考模拟试题【含答案】: 这是一份天津市南开区天大附中2025届九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    天津市河北区名校2024-2025学年九上数学开学经典模拟试题【含答案】: 这是一份天津市河北区名校2024-2025学年九上数学开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江省绍兴市名校九上数学开学综合测试模拟试题【含答案】: 这是一份2024-2025学年浙江省绍兴市名校九上数学开学综合测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map