天津市南开区名校2024-2025学年数学九上开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一次函数的图象经过点A,且函数值y随x的增大而减小,则点A的坐标可能是
A.B.C.D.
2、(4分)我校是教育部的全国青少年校园足球“满天星”训练基地,旨在“踢出快乐,拼出精彩”,如图,校园足球图片正中的黑色正五边形的内角和是( )
A.B.C.D.
3、(4分)如图,甲、丙两地相距500km,一列快车从甲地驶往丙地,途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发,同向而行,折线ABCD表示两车之间的距离y(km)与慢车行驶的时间为x(h)之间的函数关系.根据图中提供的信息,下列说法不正确的是( )
A.甲、乙两地之间的距离为200 kmB.快车从甲地驶到丙地共用了2.5 h
C.快车速度是慢车速度的1.5倍D.快车到达丙地时,慢车距丙地还有50 km
4、(4分)已知32m=8n,则m、n满足的关系正确的是( )
A.4m=nB.5m=3nC.3m=5nD.m=4n
5、(4分)若△ABC∽△DEF且面积比为9:25,则△ABC与△DEF的周长之比为( )
A.9:25B.3:25C.3:5D.2:5
6、(4分)如图所示,是半圆的直径,点从点出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )
A.B.C.D.
7、(4分)在一次英语单词听写比赛中共听写了16个单词,每听写正确1个得1分,最后全体参赛同学的听写成绩统计如下表:
则听写成绩的众数和中位数分别是( ).
A.15,14B.15,15
C.16,15D.16,14
8、(4分)一个直角三角形的两边长分别为5和12,则第三边的长为( )
A.13B.14C.D.13或
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一组数据,,,,的平均数是2,那么另一组数据,,,,的平均数是______.
10、(4分)如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________
11、(4分)聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是_____.
12、(4分)|1﹣|=_____.
13、(4分)已知,则__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴的交点分别为A、B,直线y=﹣2x+12交x轴于C,两条直线的交点为D;点P是线段DC上的一个动点,过点P作PE⊥x轴,交x轴于点E,连接BP;
(1)求△DAC的面积;
(2)在线段DC上是否存在一点P,使四边形BOEP为矩形;若存在,写出P点坐标;若不存在,说明理由;
(3)若四边形BOEP的面积为S,设P点的坐标为(x,y),求出S关于x的函数关系式,并写出自变量x的取值范围.
15、(8分)为预防传染病,某校定期对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量 与药物在空气中的持续时间成正比例;燃烧后,与成反比例(如图所示).现测得药物分钟燃完,此时教室内每立方米空气含药量为.根据以上信息解答下列问题:
(1)分别求出药物燃烧时及燃烧后 关于的函数表达式.
(2)当每立方米空气中的含药量低于 时,对人体方能无毒害作用,那么从消毒开始,在哪个时段消毒人员不能停留在教室里?
(3)当室内空气中的含药量每立方米不低于 的持续时间超过分钟,才能有效杀灭某种传染病毒.试判断此次消毒是否有效,并说明理由.
16、(8分)为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图.按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入.(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE.(精确到0.1m)(参考数值,,)
17、(10分)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立。
(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);
(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)
18、(10分)如图,在平直角坐标系xOy中,直线与反比例函数的图象关于点
(1)求点P的坐标及反比例函数的解析式;
(2)点是x轴上的一个动点,若,直接写出n的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知的平分线与的垂直平分线相交于点,,,垂足分别为,,,,则的长为__________.
20、(4分)如果一个多边形的每一个外角都等于,则它的内角和是_________.
21、(4分)如图,是根据四边形的不稳定性制作的边长均为的可活动菱形衣架,若墙上钉子间的距离,则=______度.
22、(4分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,BC=8,AB=10,则△FCD的面积为__________.
23、(4分)如图,在平面直角坐标系中,直线y=4x+4与x、y轴分别相交于点A、B,四边形ABCD是正方形,抛物线过C,D两点,且C为顶点,则a的值为_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0),将△ABC绕原点O顺时针旋转90°得到△A' B' C'.
(1)画出△A’ B’ C’,并直接写出点A的对应点A' 的坐标;
(2)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.
25、(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.
(1)根据题意,填写下表:
(2)设甲快递公司收费y1元,乙快递公司收费y2元,分别写出y1,y2关于x的函数关系式;
(3)当x>3时,小明应选择哪家快递公司更省钱?请说明理由.
26、(12分)如图所示,已知一次函数的图象与轴,轴分别交于点,.以为边在第一象限内作等腰,且,.过作轴于点.的垂直平分线交于点,交轴于点.
(1)求点的坐标;
(2)连接,判定四边形的形状,并说明理由;
(3)在直线上有一点,使得,求点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.
【详解】
解:一次函数的函数值y随x的增大而减小,
.
A、当,时,,解得,此点不符合题意,故本选项错误;
B、当,时,,解得,此点符合题意,故本选项正确;
C、当,时,,解得,此点不符合题意,故本选项错误;
D、当,时,,解得,此点不符合题意,故本选项错误.
故选:B.
考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.
2、C
【解析】
根据多边形内角和公式(n-2)×180°即可求出结果.
【详解】
解:黑色正五边形的内角和为:(5-2)×180°=540°,
故选:C.
本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.
3、C
【解析】
根据两车同时出发,同向而行,所以点A即为甲、乙两地的距离;图中点B为y=0,即快慢两车的距离为0,所以B表示快慢两车相遇的时间;由图像可知慢车走300km,用了3小时,可求出慢车的速度,进而求出快车的速度;点C的横坐标表示快车走到丙地用的时间,根据快车与慢车的速度,可求出点C的坐标
【详解】
A、由图像分析得,点A即为甲、乙两地的距离,即甲、乙两地之间的距离为选项A是正确
BC、由图像可知慢车走300km,用了3小时,则慢车的速度为100km/h,因为1h快车比慢车多走100km,故快车速度为200km/h,所以快车从甲地到丙地的时间=500200=2.5h,故选项B是正确的,快车速度是慢车速度的两倍,故选项C是错误的
D、快车从甲地驶到丙地共用了2.5h,即点C的横坐标2.5,则慢车还剩0.5h才能到丙地,距离=0.5100=50km,故快车到达丙地时,慢车距丙地还有50km,选项D是正确的
故正确答案为C
此题主要根据实际问题考查了一次函数的应用,解决此题的关键是根据函数图像,读懂题意,联系实际的变化,明确横轴和纵轴表示的意义
4、B
【解析】
∵32m=8n,
∴(25)m=(23)n,
∴25m=23n,
∴5m=3n.
故选B.
5、C
【解析】
根据相似三角形的面积的比等于相似比的平方先求出△ABC与△DEF的相似比,然后根据相似三角形的周长的比等于相似比解答即可.
【详解】
解:∵相似三角形△ABC与△DEF面积的比为9:21,
∴它们的相似比为3:1,
∴△ABC与△DEF的周长比为3:1.
故选:C.
本题主要考查了相似三角形面积的比等于相似比的平方,周长的比等于相似比的性质,熟记性质是解题的关键.
6、D
【解析】
依题意,可以知道点P从O到A匀速运动时,OP的长s逐渐变大;在上运动时,长度s不变;从B到O匀速运动时,OP的长s逐渐变小直至为1.依此即可求解.
【详解】
解:可以看出从O到A逐渐变大,而弧AB中的半径不变,从B到O中OP逐渐减少直至为1.
故选:D.
此题考查了函数随自变量的变化而变化的问题,能够结合图形正确分析距离y与时间x之间的大小变化关系,从而正确选择对应的图象.
7、C
【解析】
根据表格中的数据可知16出现的次数最多,从而可以得到众数,一共20个数据,中位数是第10个和第11个的平均数,本题得以解决.
【详解】
由表格可得,16出现的次数最多,所以听写成绩的众数是16;
一共20个数据,中位数是第10个和第11个的平均数为5,即中位数为5,
故选:C.
考查了众数和中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.
8、D
【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.
【详解】
当12和5均为直角边时,第三边==13;
当12为斜边,5为直角边,则第三边==,
故第三边的长为13或.
故选D.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据,,,,的和,然后再用平均数的定义求新数据的平均数.
【详解】
一组数据,,,,的平均数是2,有,那么另一组数据,,,,的平均数是.
故答案为1.
本题考查的是样本平均数的求法及运用,解题的关键是掌握平均数公式:.
10、6
【解析】
分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.
详解:纸条的对边平行 , 即 AB ∥ CD,AD ∥ BC ,
∴ 四边形 ABCD 是平行四边形,
∵ 两张纸条的宽度都是 3 ,
∴S四边形ABCD=AB×3=BC×3 ,
∴AB=BC ,
∴ 平行四边形 ABCD 是菱形,即四边形 ABCD 是菱形.
如图 , 过 A 作 AE⊥BC, 垂足为 E,
∵∠ABC=60∘ ,
∴∠BAE=90°−60°=30°,
∴AB=2BE ,
在 △ABE 中 ,AB2=BE2+AE2 ,
即 AB2=AB2+32 ,
解得 AB=,
∴S四边形ABCD=BC⋅AE=×3=.
故答案是:.
点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.
11、.
【解析】
首先正确数出所有的数字个数和9出现的个数;再根据频率=频数÷总数,进行计算.
解:根据题意,知在数据中,共33个数字,其中11个9;
故数字9出现的频率是.
12、﹣1.
【解析】
根据差的绝对值是大数减小数,可得答案.
【详解】
|1﹣|=﹣1,
故答案为﹣1.
本题考查了实数的性质,差的绝对值是大数减小数.
13、1
【解析】
直接利用二次根式非负性得出a,b的值,进而得出答案.
【详解】
∵,
∴a=−1,b=1,
∴−1+1=1.
故答案为:1.
此题主要考查了非负数的性质,正确得出a,b的值是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)S△DAC=1;(2)存在, 点P的坐标是(5,2);(3)S=﹣x2+7x(4≤x<6).
【解析】
(1)想办法求出A、D、C三点坐标即可解决问题;
(2)存在.根据OB=PE=2,利用待定系数法即可解决问题;
(3)利用梯形的面积公式计算即可;
【详解】
(1)当y=0时, x+2=0,
∴x=﹣4,点A坐标为(﹣4,0)
当y=0时,﹣2x+12=0,
∴x=6,点C坐标为(6,0)
由题意,解得,
∴点D坐标为(4,4)
∴S△DAC=×10×4=1.
(2)存在,∵四边形BOEP为矩形,
∴BO=PE
当x=0时,y=2,点B坐标为(0,2),
把y=2代入y=﹣2x+12得到x=5,
点P的坐标是(5,2).
(3)∵S=(OB+PE)•OE
∴S=(2﹣2x+12)•x=﹣x2+7x(4≤x<6).
本题考查一次函数综合题、二元一次方程组、矩形的判定和性质、梯形的面积公式等知识,解题的关键是熟练掌握待定系数法,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.
15、(1),;(2)第分至分内消毒人员不可以留在教室里;(3)本次消毒有效.
【解析】
(1)设燃烧时药物燃烧后y与x之间的解析式y=ax,药物燃烧后y与x之间的解析式y=,把点(10,8)代入即可;
(2)把y=1.6代入函数解析式,求出相应的x;
(3)把y=3.2代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与20进行比较,大于等于20就有效;
【详解】
(1)设燃烧时药物燃烧后y与x之间的解析式y=ax,点(10,8)代入,得
10a=8,
∴a=,
∴;
药物燃烧后y与x之间的解析式y=,把点(10,8)代入,得
k=80,
∴;
(2)把代入可得
把代入可得
根据图象,当时,
即从消毒开始后的第分至分内消毒人员不可以留在教室里.
(3)把代入可得
把代入可得
本次消毒有效.
本题考查一次函数、反比例函数的定义、性质与运用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,进一步根据题意求解答案.
16、2.3m
【解析】
根据锐角三角函数的定义,可在Rt△ACD中解得BD的值,进而求得CD的大小;在Rt△CDE中,利用正弦的定义,即可求得CE的值.
【详解】
在Rt△ABD中,∠BAD=18°,AB=9m,
∴BD=AB×tan18°≈2.92m,
∴CD=BD-BC=2.92-0.5=2.42m,
在Rt△CDE中,∠CDE=72°,CD≈2.42m,
∴CE=CD×sin72°≈2.3m.
答:CE的高为2.3m.
本题考查了解直角三角形的应用,解直角三角形的应用是中考必考题,一般难度不大,正确作出辅助线构造直角三角形是解题关键.
17、(1)①PE=PB,②PE⊥PB;(2)成立,理由见解析(3)①PE=PB,②PE⊥PB.
【解析】
(1)根据正方形的性质和全等三角形的判定定理可证△PDC≅△PBC,推出PB=PD=PE,∠PDE=180°−∠PBC=∠PED,求出∠PEC+∠PBC=180°,求出∠EPB的度数即可
(2)证明方法同(1),可得PE=PB,PE⊥PB
(3)证明方法同(1),可得PE=PB,PE⊥PB
【详解】
(1)①PE=PB,②PE⊥PB.
(2)(1)中的结论成立。
①∵四边形ABCD是正方形,AC为对角线,
∴CD=CB,∠ACD=∠ACB,
又PC=PC,
∴△PDC≌△PBC,
∴PD=PB,
∵PE=PD,
∴PE=PB,
②:由①,得△PDC≌△PBC,
∴∠PDC=∠PBC.
又∵PE=PD,
∴∠PDE=∠PED.
∴∠PDE+∠PDC=∠PEC+∠PBC=180°,
∴∠EPB=360°−(∠PEC+∠PBC+∠DCB)=90°,
∴PE⊥PB.
(3)如图所示:
结论:①PE=PB,②PE⊥PB.
此题考查正方形的性质,垂线,全等三角形的判定与性质,解题关键在于利用全等三角形的性质进行求证
18、(1);(2)
【解析】
(1)先把P(1,a)代入y=x+2,求出a的值,确定P点坐标为(1,3),然后把P(1,3)代入y=求出k的值,从而可确定反比例函数的解析式;
(2)过P作PB⊥x轴于点B,则B点坐标为(1,0),PB=3,然后利用PQ≤1,由垂线段最短可知,PQ≥3,然后利用PQ≤1,在直角三角形PBQ中,PQ=1时,易确定n的取值范围,要注意分点Q在点B左右两种情况.当点Q在点B左侧时,点Q坐标为(-3,0);当点Q在点B右侧时,点Q坐标为(1,0),从而确定n的取值范围.
【详解】
解:(1)∵直线与反比例函数的图象交于点,
∴.
∴点P的坐标为.
∴.
∴反比例函数的解析式为.
(2)过P作PB⊥x轴于点B,
∵点P的坐标为(1,3),Q(n,0)是x轴上的一个动点,PQ≤1,
由勾股定理得BQ≤,
∴1-4=-3,1+4=1,
∴n的取值范围为-3≤n≤1.
本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了勾股定理的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
连接DC、DB,根据中垂线的性质即可得到DB=DC,根据角平分线的性质即可得到DE=DF,从而即可证出△DEB≌DFC,从而得到BE=CF,再证△AED≌△AFD,即可得到AE=AF,最后根据,即可求出BE.
【详解】
解:如图所示,连接DC、DB,
∵DG垂直平分BC
∴DB=DC
∵AD平分,,
∴DE=DF,∠DEB=∠DFC=90°
在Rt△DEB和Rt△DFC中,
∴Rt△DEB≌Rt△DFC
∴BE=CF
在Rt△AED和Rt△AFD中,
∴Rt△AED≌Rt△AFD
∴AE=AF
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE
∵,
∴BE=(AB-AC)=1.5.
故答案为:1.5.
此题考查的是垂直平分线的性质、角平分线的性质和全等三角形的判定,掌握垂直平分线上的点到线段两个端点的距离相等、角平分线上的点到角两边的距离相等和用HL证全等三角形是解决此题的关键.
20、
【解析】
根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n-2)•180°,代入公式就可以求出内角和.
【详解】
解:多边形边数为:360°÷30°=12,
则这个多边形是十二边形;
则它的内角和是:(12-2)•180°=1°.
故答案为:1.
本题考查多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
21、1
【解析】
根据题意可得,AB和菱形的两边构成的三角形是等边三角形,可得∠A=60°,所以,∠1=1°
【详解】
解:如图,连接AB.
∵菱形的边长=25cm,AB=BC=25cm
∴△AOB是等边三角形
∴∠AOB=60°,
∴∠AOD=1°
∴∠1=1°.
故答案为:1.
本题主要考查菱形的性质及等边三角形的判定的运用.
22、2.
【解析】
根据题意可证△ADE≌△ACD,可得AE=AC=2,CD=DE,根据勾股定理可得DE,CD的长,再根据勾股定理可得FC的长,即可求△FCD的面积.
【详解】
∵AD是∠BAC的平分线,DE⊥AB于E,∠C=90°
∴CD=DE
∵CD=DE,AD=AD
∴Rt△ACD≌Rt△ADE
∴AE=AC
∵在Rt△ABC中,AC==2
∴AE=2
∴BE=AB-AE=4
∵在Rt△DEB中,BD1=DE1+BE1.
∴DE1+12=(8-DE)1
∴DE=3 即BD=5,CD=3
∵BD=DF
∴DF=5
在Rt△DCF中,FC==4
∴△FCD的面积为=×FC×CD=2
故答案为2.
本题考查了全等三角形的性质和判定,角平分线的性质,勾股定理,关键是灵活运用这些性质解决问题.
23、-1
【解析】
如图作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,利用三角形全等,求出点C、点D和点F坐标即可解决问题.
【详解】
解:如图,作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F.
∵直线y=-1x+1与x轴、y轴分别交于A、B两点,
∴点B(0,1),点A(1,0),△ABO≌△DAM
∵四边形ABCD是正方形,
∴AB=AD=DC=BC,∠BAD=90°,
∵∠BAO+∠ABO=90°,∠BAO+∠DAM=90°,
∴∠ABO=∠DAM,
在△ABO和△DAM中,
,
∴△ABO≌△DAM,
∴AM=BO=1,DM=AO=1,
同理可以得到:CF=BN=AO=1,DF=CN=BO=1,
∴点F(5,5),C(1,5),D(5,1),
把C(1,1),D(5,1)代入得:
,解得:b=-9a-1,
∵C为顶点, ∴,即 ,解得:a=-1.
故答案为-1.
本题考查二次函数与一次函数的交点、正方形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,属于中考常考题型.
二、解答题(本大题共3个小题,共30分)
24、(1)画图见解析;(2),或.
【解析】
试题分析:(1)根据网格结构找出点A、B、C绕坐标原点O逆时针旋转90°对应点A′、B′、C′的位置,然后顺次连接即可;
(2)根据平行四边形的对边平行且相等,分AB、BC、AC是对角线三种情况分别写出即可.
试题解析:(1)如图所示△DEF为所求;
(2)若AB是对角线,则点D(-7,3),
若BC是对角线,则点D(-5,-3),
若AC是对角线,则点D(3,3),
故答案为或或 .
25、(1)11,19,52,1;(2);y2=16x+3;(3)当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
【解析】
(1)根据甲、乙公司的收费方式,求出y值即可;
(2)根据甲、乙公司的收费方式结合数量关系,找出y1、y2(元)与x(千克)之间的函数关系式;
(3)x>3,分别求出y1>y2、y1=y2、y1<y2时x的取值范围,综上即可得出结论.
【详解】
解:(1)当x=0.5时,y甲=22×0.5=11;
当x=1时,y乙=16×1+3=19;
当x=3时,y甲=22+15×2=52;
当x=3时,y甲=22+15×3=1.
故答案为:11;19;52;1.
(2)当0<x≤1时,y1=22x;
当x>1时,y1=22+15(x-1)=15x+2.
∴
y2=16x+3(x>0);
(3)当x>3时,
当y1>y2时,有15x+2>16x+3,
解得:x<3;
当y2=y2时,有15x+2=16x+3,
解得:x=3;
当y1<y2时,有15x+2<16x+3,
解得:x>3.
∴当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
本题考查了一次函数的应用,解题的关键是:(1)根据甲、乙公司的收费方式求出y值;(2)根据甲、乙公司的收费方式结合数量关系,找出、(元)与x(千克)之间的函数关系式;(3)分情况考虑>、=、<时x的取值范围.
26、(1);(2)四边形是矩形,理由详见解析;(3)点坐标为或.
【解析】
(1)根据一次函数解析式求出A,B坐标,证明△AOB≌△BDC(AAS),即可解决问题.
(2)证明EG=CD.EG∥CD,推出四边形EGDC是平行四边形,再根据轴即可解决问题.
(3)先求出,设M(1,m),构建方程即可解决问题.
【详解】
(1)当时,,∴.∴.
当时,,∴.∴.
∵,∴.
在和中,
∵,
∴.
∴.
∴.
∴.
(2)∵是的垂直平分线,
∴点坐标为,点坐标为,∴.
∵,,
∴四边形是平行四边形.
∵轴,
∴平行四边形是矩形.
(3)在中,,
∴,
∴.
设点的坐标为,则.
过作于,则.
.
解得:或.
所以点坐标为或.
本题属于一次函数综合题,考查了等腰三角形的性质,矩形的性质,一次函数的性质,矩形的判定和性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
批阅人
成绩(分)
12
13
14
15
16
人数(个)
1
3
4
5
7
快递物品重量(千克)
0.5
1
3
4
…
甲公司收费(元)
22
…
乙公司收费(元)
11
51
67
…
天津市南开区天大附中2025届九上数学开学统考模拟试题【含答案】: 这是一份天津市南开区天大附中2025届九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
天津市河北区名校2024-2025学年九上数学开学经典模拟试题【含答案】: 这是一份天津市河北区名校2024-2025学年九上数学开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年浙江省绍兴市名校九上数学开学综合测试模拟试题【含答案】: 这是一份2024-2025学年浙江省绍兴市名校九上数学开学综合测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。