|试卷下载
终身会员
搜索
    上传资料 赚现金
    天津市北辰区名校2025届数学九年级第一学期开学达标检测试题【含答案】
    立即下载
    加入资料篮
    天津市北辰区名校2025届数学九年级第一学期开学达标检测试题【含答案】01
    天津市北辰区名校2025届数学九年级第一学期开学达标检测试题【含答案】02
    天津市北辰区名校2025届数学九年级第一学期开学达标检测试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    天津市北辰区名校2025届数学九年级第一学期开学达标检测试题【含答案】

    展开
    这是一份天津市北辰区名校2025届数学九年级第一学期开学达标检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在四边形ABCD中,对角线AC与BD相交于点O,已知AB∥DC,则添加下列结论中的一个条件后,仍不能判定四边形ABCD是平行四边形的是( )
    A.AO=COB.AC=BDC.AB=CDD.AD∥BC
    2、(4分)下列各式,计算结果正确的是( )
    A.×=10B.+=C.3-=3D.÷=3
    3、(4分) 如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
    A.1B.2C.3D.4
    4、(4分)下列图形:平行四边形、矩形、菱形、等腰梯形、正方形中是轴对称图形的有( )
    A.1个B.2个C.3个D.4个
    5、(4分)若分式在实数范围内有意义,则实数x的取值范围是( )
    A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣2
    6、(4分)下列各式正确的是( )
    A.B.C.D.
    7、(4分)如图,在矩形ABCD中,AB=6,AD=8,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )
    A.8B.9C.10D.2
    8、(4分)如图所示,将△ABC绕点A按逆时针旋转50°后,得到△ADC′,则∠ABD的度数是( )
    A.30°B.45°C.65°D.75°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)函数自变量的取值范围是______.
    10、(4分)使分式的值为0,这时x=_____.
    11、(4分)计算:____________.
    12、(4分)如图,将绕点旋转一定角度得到,点的对应点恰好落在边上.若,,则________.
    13、(4分)如图,在ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=52°,则∠B的度数是________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:
    酒店豪华间有多少间?旺季每间价格为多少元?
    15、(8分)由中宣部建设的“学习强国”学习平台正式上线。这是推动新时代中国特色社会主义思想、推进马克思主义学习型政党和学习型社会建设的创新举措.某基层党组织随机抽取了部分党员的某天的学习成绩并进行了整理,分成5个小组(表示成绩,单位:分,且),根据学习积分绘制出部分频数分布表和部分频数分布直方图,其中第2、第5两组测试成绩人数直方图的高度比为,请结合下列图标中相关数据回答下列问题:
    (1)填空:_____,______;
    (2)补全频数分布直方图;
    (3)这次积分的中位数落在第______组;
    (4)已知该党组织共有党员225人;请估计当天学习积分获得“优秀”等级()的党员有多少人?
    16、(8分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:
    (1)BC= cm;
    (2)当t为多少时,四边形PQCD成为平行四边形?
    (3)当t为多少时,四边形PQCD为等腰梯形?
    (4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.
    17、(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是 = =;
    迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
    ①求证:△ADB≌△AEC;
    ②请直接写出线段AD,BD,CD之间的等量关系式;
    拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
    ①证明△CEF是等边三角形;
    ②若AE=5,CE=2,求BF的长.
    18、(10分)把下列各式分解因式:
    (1)x(x-y)2-2(y-x)2 (2)(x2+4)2-16x2
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某工厂为满足市场需要,准备生产一种大型机械设备,已知生产一台这种大型机械设备需,,三种配件共个,且要求所需配件数量不得超过个,配件数量恰好是配件数量的倍,配件数量不得低于,两配件数量之和.该工厂准备生产这种大型机械设备台,同时决定把生产,,三种配件的任务交给一车间.经过试验,发现一车间工人的生产能力情况是:每个工人每天可生产个配件或个配件或个配件.若一车间安排一批工人恰好天能完成此次生产任务,则生产一台这种大型机械设备所需配件的数量是_______个.
    20、(4分)如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_____.
    21、(4分)如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为_____.
    22、(4分)将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.
    23、(4分)已知一组数据为1,2,3,4,5,则这组数据的方差为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在△ABC中,AD为BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.
    (1)四边形AFCD是什么特殊的四边形?请说明理由.
    (2)填空:
    ①若AB=AC,则四边形AFCD是_______形.
    ②当△ABC满足条件______时,四边形AFCD是正方形.
    25、(10分)在Rt△ABC中,∠B=900,AC=100cm, ∠A=600,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤25)过点D作DF⊥BC于点F,连结DE、EF。
    (1)四边形AEFD能够成为菱形吗?若能,求相应的t值,若不能,请说明理由。
    (2)当t为何值时,△DEF为直角三角形?请说明理由。
    26、(12分)计算
    (1)
    (2)
    (3)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据平行四边形的判定定理依次判断即可.
    【详解】
    ∵AB∥CD,
    ∴∠ABD=∠BDC,∠BAC=∠ACD,
    ∵AO=CO,
    ∴△ABO≌△CDO,
    ∴AB=CD,
    ∴四边形ABCD是平行四边形,故A正确,且C正确;
    ∵AB∥CD,AD∥BC,
    ∴四边形ABCD是平行四边形,故D正确;
    由AC=BD无法证明四边形ABCD是平行四边形,且平行四边形的对角线不一定相等,
    ∴B错误;
    故选:B.
    此题考查了添加一个条件证明四边形是平行四边形,正确掌握平行四边形的判定定理并运用解题是关键.
    2、D
    【解析】
    分析:根据二次根式的加减法对B、C进行判断;根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对D进行判断.
    详解:A、原式=,所以A选项错误;
    B、与不是同类二次根式,不能合并,所以B选项错误;
    C、原式=2,所以C选项错误;
    D、原式=,所以D选项正确.
    故选:D.
    点睛:本题考查了二次根式的运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    3、C
    【解析】
    试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.
    ∴EP+FP=EP+F′P.
    由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.
    ∵四边形ABCD为菱形,周长为12,
    ∴AB=BC=CD=DA=1,AB∥CD,
    ∵AF=2,AE=1,
    ∴DF=AE=1,
    ∴四边形AEF′D是平行四边形,
    ∴EF′=AD=1.
    ∴EP+FP的最小值为1.
    故选C.
    考点:菱形的性质;轴对称-最短路线问题
    4、D
    【解析】
    根据轴对称图形的概念对各图形分析判断后即可得解.
    【详解】
    平行四边形不是轴对称图形,
    矩形是轴对称图形,
    菱形是轴对称图形,
    等腰梯形是轴对称图形,
    正方形是轴对称图形,
    所以,轴对称图形的是:矩形、菱形、等腰梯形、正方形共4个.
    故选D.
    此题考查轴对称图形,解题关键在于掌握其定义.
    5、D
    【解析】
    直接利用分式有意义的条件分析得出答案.
    【详解】
    ∵代数式在实数范围内有意义,
    ∴x+2≠0,
    解得:x≠﹣2,
    故选D.
    本题主要考查了分式有意义的条件,熟练掌握分母不为0时分式有意义是解题的关键.
    6、D
    【解析】
    根据二次根式的性质解答即可.
    【详解】
    解:A. ,错误;
    B. ,错误;
    C. ,错误;
    D. ,正确.故选D.
    本题考查了二次根式的性质的应用,能根据二次根式的性质把根式化成最简二次根式是解题的关键.
    7、B
    【解析】
    取BC中点O,连接OE,OF,根据矩形的性质可求OC,CF的长,根据勾股定理可求OF的长,根据直角三角形的性质可求OE的长,根据三角形三边关系可求得当点O,点E,点F共线时,EF有最大值,即EF=OE+OF.
    【详解】
    解:如图,取BC中点O,连接OE,OF,
    ∵四边形ABCD是矩形,
    ∴AB=CD=6,AD=BC=8,∠C=10°,
    ∵点F是CD中点,点O是BC的中点,
    ∴CF=3,CO=4,
    ∴OF==5,
    ∵点O是Rt△BCE的斜边BC的中点,
    ∴OE=OC=4,
    ∵根据三角形三边关系可得:OE+OF≥EF,
    ∴当点O,点E,点F共线时,EF最大值为OE+OF=4+5=1.
    故选:B.
    本题考查了矩形的性质,三角形三边关系,勾股定理,直角三角形的性质,找到当点O,点E,点F共线时,EF有最大值是本题的关键.
    8、C
    【解析】
    先根据旋转的性质得AB=AD,∠BAD=50°,则利用等腰三角形的性质得到∠ABD=∠ADB,然后根据三角形内角和计算∠ABD的度数.
    【详解】
    ∵△ABC绕点A按逆时针旋转50°后,得到△ADC′,
    ∴AB=AD,∠BAD=50°,
    ∴∠ABD=∠ADB,
    ∴∠ABD=(180°-50°)=65°.
    故选:C.
    本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理;熟练掌握旋转的性质,得到△ABD为等腰三角形是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据分式与二次根式的性质即可求解.
    【详解】
    依题意得x-9>0,
    解得
    故填:.
    此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质.
    10、1
    【解析】
    试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
    答案为1.
    考点:分式方程的解法
    11、﹣1
    【解析】
    首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.
    【详解】
    原式=﹣8+1+1+3=﹣1.
    故答案为:﹣1.
    本题考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题的关键.
    12、1
    【解析】
    利用含30度的直角三角形三边的关系得到BC=1AB=4,再根据旋转的性质得AD=AB,则可判断△ABD为等边三角形,所以BD=AB=1,然后计算BC-BD即可.
    【详解】
    解:∵∠BAC=90°,∠B=60°,
    ∴BC=1AB=4,
    ∵Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,
    ∴AD=AB,
    而∠B=60°,
    ∴△ABD为等边三角形,
    ∴BD=AB=1,
    ∴CD=BC-BD=4-1=1.
    故答案为:1.
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
    13、76º
    【解析】
    过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的值,由此得解.
    【详解】
    过F作FG∥AB∥CD,交BC于G;
    则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;
    ∵BC=2AB,F为AD的中点,
    ∴BG=AB=FG=AF,
    连接EG,在Rt△BEC中,EG是斜边上的中线,
    则BG=GE=FG=BC;
    ∵AE∥FG,
    ∴∠EFG=∠AEF=∠FEG=52°,
    ∴∠AEG=∠AEF+∠FEG=104°,
    ∴∠B=∠BEG=180°-104°=76°.
    考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、该酒店豪华间有50间,旺季每间价格为800元.
    【解析】
    根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;
    【详解】
    设淡季每间的价格为x元,酒店豪华间有y间,

    解得, ,
    ∴x+13x=600+13×600=800,
    答:该酒店豪华间有50间,旺季每间价格为800元;
    此题考查二元一次方程组的应用,解题关键在于理解题意列出方程组.
    15、(1)故答案为4,32%;(2)图形见解析;(3)第三组;(4)18 (人)
    【解析】
    (1)根据3组的人数除以3组所占的百分比,可得总人数,进而可求出1组,4组的所占百分比,则a,b的值可求;
    (2)由(1)中的数据即可补全频数分布直方图;
    (3)50个人的数据中,中位数是第25和26两人的平均数,
    (4)用225乘以“优秀”等级()的所占比重即可求解.
    【详解】
    (1)由题意可知总人数=15÷30%=50(人),
    所以4组所占百分比=10÷50×100%=20%,1组所占百分比=5÷50×100%=10%,
    因为2组、5组两组测试成绩人数直方图的高度比为4:1,
    所以5a=50−5−15−10,
    解得a=4,
    所以b=16÷50×100%=32%,
    故答案为4,32%;
    (2)由(1)可知补全频数分布直方图如图所示:
    (3) 50个人的数据中,中位数是第25和26两人的平均数,而第25和26两人都出现在第三组,
    (4)(人)
    此题考查了频数分布表和条形统计图.认真审题找到两个图表中的关联信息,通过明确的信息推出未知的变量是解题关键.
    16、(1)18cm(2)当t=秒时四边形PQCD为平行四边形(3)当t=时,四边形PQCD为等腰梯形(4)存在t,t的值为秒或4秒或秒
    【解析】试题分析:(1)作DE⊥BC于E,则四边形ABED为矩形.在直角△CDE中,已知DC、DE的长,根据勾股定理可以计算EC的长度,根据BC=BE+EC即可求出BC的长度;
    (2)由于PD∥QC,所以当PD=QC时,四边形PQCD为平行四边形,根据PD=QC列出关于t的方程,解方程即可;
    (3)首先过D作DE⊥BC于E,可求得EC的长,又由当PQ=CD时,四边形PQCD为等腰梯形,可求得当QC-PD=QC-EF=QF+EC=2CE,即3t-(12-2t)=12时,四边形PQCD为等腰梯形,解此方程即可求得答案;
    (4)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.
    试题解析:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.
    (1)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,
    DE=AB=8cm,AD=BE=12cm,
    在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,
    ∴EC==6cm,
    ∴BC=BE+EC=18cm.
    (2)∵AD∥BC,即PD∥CQ,
    ∴当PD=CQ时,四边形PQCD为平行四边形,
    即12-2t=3t,
    解得t=秒,
    故当t=秒时四边形PQCD为平行四边形;
    (3)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,DE=AB=8cm,AD=BE=12cm,
    当PQ=CD时,四边形PQCD为等腰梯形.
    过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是矩形,EF=PD=12-2t,PF=DE.
    在Rt△PQF和Rt△CDE中,

    ∴Rt△PQF≌Rt△CDE(HL),
    ∴QF=CE,
    ∴QC-PD=QC-EF=QF+EC=2CE,
    即3t-(12-2t)=12,
    解得:t=,
    即当t=时,四边形PQCD为等腰梯形;
    (4)△DQC是等腰三角形时,分三种情况讨论:
    ①当QC=DC时,即3t=10,
    ∴t=;
    ②当DQ=DC时,
    ∴t=4;
    ③当QD=QC时,3t×
    ∴t=.
    故存在t,使得△DQC是等腰三角形,此时t的值为秒或4秒或秒.
    考点:四边形综合题.
    17、迁移应用:①证明见解析;②CD=AD+BD;拓展延伸:①证明见解析;②3.
    【解析】
    迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;
    ②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cs30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;
    拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;
    ②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cs30°,由此即可解决问题.
    【详解】
    迁移应用:①证明:如图②
    ∵∠BAC=∠DAE=120°,
    ∴∠DAB=∠CAE,
    在△DAE和△EAC中,
    ∴△DAB≌△EAC,
    ②解:结论:CD=AD+BD.
    理由:如图2-1中,作AH⊥CD于H.
    ∵△DAB≌△EAC,
    ∴BD=CE,
    在Rt△ADH中,DH=AD•cs30°=AD,
    ∵AD=AE,AH⊥DE,
    ∴DH=HE,
    ∵CD=DE+EC=2DH+BD=AD+BD.
    拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.
    ∵四边形ABCD是菱形,∠ABC=120°,
    ∴△ABD,△BDC是等边三角形,
    ∴BA=BD=BC,
    ∵E、C关于BM对称,
    ∴BC=BE=BD=BA,FE=FC,
    ∴A、D、E、C四点共圆,
    ∴∠ADC=∠AEC=120°,
    ∴∠FEC=60°,
    ∴△EFC是等边三角形,
    ②解:∵AE=5,EC=EF=2,
    ∴AH=HE=2.5,FH=4.5,
    在Rt△BHF中,∵∠BFH=30°,
    ∴=cs30°,
    ∴BF==3=3.
    本题考查全等三角形的判定和性质、等腰三角形的性质、四点共圆、等边三角形的判定和性质、锐角三角函数等知识,解题关键是灵活应用所学知识解决问题,学会添加辅助圆解决问题,属于中考压轴题.
    18、 (1)(x-y)²(x-1);(1)(x+1)²(x-1)².
    【解析】
    (1)直接提取公因式(x-y)1,进而分解因式得出答案;
    (1)直接利用平方差公式分解因式,进而结合完全平方公式分解因式即可.
    【详解】
    (1)x(x-y)1-1(y-x)1
    =(x-y)1(x-1);
    (1)(x1+4)1-16x1
    =(x1+4-4x)(x1+4+4x)
    =(x-1)1(x+1)1.
    此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    设生产一台这种大型机械设备需种配件x个,则需B种配件4x个,C种配件160-5x个,根据题意列不等式组可得 ;由题意可知车间1天可生产一台这种大型机械设备,设每天生产,,三种配件的工人数分别是a,b,c,由a,b,c都是正整数求解,即可得出答案.
    【详解】
    解:设生产一台这种大型机械设备需种配件x个,则需B种配件4x个,C种配件160-5x个,根据题意得
    ,解得,
    由题意可知车间1天可生产一台这种大型机械设备,设每天生产,,三种配件的工人数分别是a,b,c,则
    ,解得 ,
    因为a,b,c都是正整数,
    所以a=1,b=2,c=2,
    所以每天生产一台这种大型机械设备所需配件的数量是40×2=80(个),
    这种大型机械设备台所需配件的数量是80×10=1(个).
    故答案为:1.
    本题考查一元一次不等式组的应用,本题难点在于根据题意列不等式组求出x的取值范围.解题的关键是解一元一次不等式组得出x的取值范围.
    20、1
    【解析】
    根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.
    解答:解:过点P作MN⊥AD,
    ∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,
    ∴AP⊥BP,PN⊥BC,
    ∴PM=PE=2,PE=PN=2,
    ∴MN=2+2=1.
    故答案为1.
    21、
    【解析】
    分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM=1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.
    【详解】
    解:过点E作ME⊥AD,延长ME交BC与N,
    ∵四边形ABCD是矩形
    ∴AD∥BC,且ME⊥DA
    ∴EN⊥BC 且∠A=90°=∠ABC=90°
    ∴四边形ABNM是矩形
    ∴AB=MN=5,AM=BN
    若ME:EN=1:4,如图1
    ∵ME:EN=1:4,MN=5
    ∴ME=1,EN=4
    ∵折叠
    ∴BE=AB=5,AP=PE
    在Rt△BEN中,BN==3
    ∴AM=3
    在Rt△PME中,PE2=ME2+PM2
    AP2=(3﹣AP)2+1
    解得AP=
    若ME:EN=4:1,则EN=1,ME=4,如 图2
    在Rt△BEN中,BN==2
    ∴AM=2
    在Rt△PME中,PE2=ME2+PM2
    AP2=(2﹣AP )2+16
    解得AP=
    若点E在矩形外,如图
    ∵EN:EM=1:4
    ∴EN=,EM=
    在Rt△BEN中,BN==
    ∴AM=
    在Rt△PME中,PE2=ME2+PM2
    AP2=(AP﹣)2+()2
    解得:AP=5
    故答案为,,5.
    本题考查矩形的性质、折叠的性质和勾股定理,注意分情况讨论是解题关键.
    22、y=2x+1
    【解析】
    分析:直接根据函数图象平移的法则进行解答即可.
    详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;
    故答案为y=2x+1.
    点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
    23、1.
    【解析】
    试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.
    由平均数的公式得:(1+1+3+4+5)÷5=3,
    ∴方差=[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]÷5=1.
    考点:方差.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)平行四边形,理由见解析; (2)①矩形,②AB=AC,∠BAC=1.
    【解析】
    (1)由“AAS”可证△AEF≌△DEB,可得AF=BD=CD,由平行四边形的判定可得四边形AFCD是平行四边形;
    (2)①由等腰三角形的性质可得AD⊥BC,可证平行四边形AFCD是矩形;
    ②由等腰直角三角形的性质可得AD=CD=BD,AD⊥BC,可证平行四边形AFCD是正方形.
    【详解】
    解:(1)平行四边形
    理由如下:∵AF∥BC
    ∴∠AFE=∠DBE,
    在ΔAFE与△DBE中
    ∴ΔAFE≌ΔDBE
    ∴AF=BD,
    又BD=CD
    ∴AF=CD
    又AF∥CD
    ∴四边形AFCD是平行四边形;
    (2)①∵AB=AC,AD是BC边上的中线
    ∴AD⊥BC,且四边形AFCD是平行四边形
    ∴四边形AFCD是矩形;
    ②当△ABC满足AB=AC,∠BAC=1°条件时,四边形AFCD是正方形.
    理由为:∵AB=AC,∠BAC=1°,AD是BC边上的中线
    ∴AD=CD=BD,AD⊥BC
    ∵四边形AFCD是平行四边形,AD⊥BC
    ∴四边形AFCD是矩形,且AD=CD
    ∴四边形AFCD是正方形.
    故答案为:(1)平行四边形,理由见解析; (2)①矩形,②AB=AC,∠BAC=1.
    本题考查正方形的判定,平行四边形的判定以及全等三角形的判定与性质、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.
    25、(1)能,10;(2) 或12,理由见解析.
    【解析】
    (1)首先根据题意计算AB的长,再证明四边形AEFD是平行四边形,要成菱形则AD=AE,因此可得t的值.
    (2)要使△DEF为直角三角形,则有两种情况:①∠EDF=90°;②∠DEF=90°,分别计算即可.
    【详解】
    解:(1)能,
    ∵在Rt△ABC中,∠C=90°﹣∠A=30°,
    ∴AB=AC=×60=30cm。
    ∵CD=4t,AE=2t,
    又∵在Rt△CDF中,∠C=30°,∴DF=CD=2t。∴DF=AE。
    ∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形。
    当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10。
    ∴当t=10时,AEFD是菱形。
    (2)若△DEF为直角三角形,有两种情况:
    ①如图1,∠EDF=90°,DE∥BC,
    则AD=2AE,即60﹣4t=2×2t,解得:t= 。
    ②如图2,∠DEF=90°,DE⊥AC,
    则AE=2AD,即
    2t =2×60-8t,解得:t=12。
    综上所述,当t= 或12时,△DEF为直角三角形
    本题主要考查解直角三角形,关键在于第二问中直角的确定,这类问题是分类讨论的思想,应当掌握.
    26、(1)(2)(3)
    【解析】
    (1)先把各二次根式化为最简二次根式,然后去括号后合并即可;
    (2)利用二次根式的乘除法则运算,然后合并同类二次根式即可;
    (3)根据平方差公式和完全平方公式进行计算.
    【详解】
    (1)
    解:原式


    (2)
    解:原式

    (3)
    解:原式

    本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
    题号





    总分
    得分
    淡季
    旺季
    未入住房间数
    10
    0
    日总收入(元)
    24000
    40000
    学习积分频数分布表
    组别
    成绩分
    频数
    频率
    第1组
    5
    第2组
    第3组
    15
    30%
    第4组
    10
    第5组
    相关试卷

    天津市静海县名校2025届数学九年级第一学期开学达标测试试题【含答案】: 这是一份天津市静海县名校2025届数学九年级第一学期开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    天津市红桥区名校2025届九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份天津市红桥区名校2025届九年级数学第一学期开学达标检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    天津市部分区2024年九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份天津市部分区2024年九年级数学第一学期开学达标检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map