开学活动
搜索
    上传资料 赚现金

    四川省甘孜藏族自治州甘孜县2025届数学九上开学考试试题【含答案】

    四川省甘孜藏族自治州甘孜县2025届数学九上开学考试试题【含答案】第1页
    四川省甘孜藏族自治州甘孜县2025届数学九上开学考试试题【含答案】第2页
    四川省甘孜藏族自治州甘孜县2025届数学九上开学考试试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省甘孜藏族自治州甘孜县2025届数学九上开学考试试题【含答案】

    展开

    这是一份四川省甘孜藏族自治州甘孜县2025届数学九上开学考试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
    A.B.2C.D.2
    2、(4分)菱形,矩形,正方形都具有的性质是( )
    A.四条边相等,四个角相等 B.对角线相等
    C.对角线互相垂直 D.对角线互相平分
    3、(4分)如图,菱形ABCD中,点E,F分别是AC,DC的中点,若EF=3,则菱形ABCD的周长是( )
    A.12B.16C.20D.24
    4、(4分)如图,菱形ABCD中,对角线AC等于,∠D=120°,则菱形ABCD的面积为( )
    A.B.54C.36D.
    5、(4分)把中根号外的(a-1)移入根号内,结果是( )
    A.B.C.D.
    6、(4分)下列关于 x 的分式方程中,有解的是( )
    A.B.
    C.D.
    7、(4分)弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是( )
    A.在没挂物体时,弹簧的长度为10cm
    B.弹簧的长度随物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量
    C.如果物体的质量为mkg,那么弹簧的长度ycm可以表示为y=2.5m+10
    D.在弹簧能承受的范围内,当物体的质量为4kg时,弹簧的长度为20cm
    8、(4分)下列二次根式中,可与合并的二次根式是
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某个“清凉小屋”自动售货机出售三种饮料.三种饮料的单价分别是2元/瓶、3元/瓶、5元/瓶. 工作日期间,每天上货量是固定的,且能全部售出,其中,饮料的数量(单位:瓶)是饮料数量的2倍,饮料的数量(单位:瓶)是饮料数量的2倍. 某个周六,三种饮料的上货量分别比一个工作日的上货量增加了50%,60%,50%,且全部售出. 但是由于软件bug,发生了一起错单(即消费者按某种饮料1瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了403元. 则这个“清凉小屋”自动售货机一个工作日的销售收入是__________元.
    10、(4分)直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是10,则较短的直角边的长为___________.
    11、(4分)如图,在平面直角坐标系中,点为第一象限内一点,且.连结,并以点为旋转中心把逆时针转90°后得线段.若点、恰好都在同一反比例函数的图象上,则的值等于________.
    12、(4分)(2014•嘉定区二模)一元二次方程x2=x的解为 .
    13、(4分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:
    该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)为了解学生每天的睡眠情况,某初中学校从全校 800 名学生中随机抽取了 40 名学生,调查了他们平均每天的睡眠时间(单位: h) ,统计结果如下:
    9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,
    7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.
    在对这些数据整理后,绘制了如下的统计图表:
    睡眠时间分组统计表 睡眠时间分布情况
    请根据以上信息,解答下列问题:
    (1) m = , n = , a = , b = ;
    (2)抽取的这 40 名学生平均每天睡眠时间的中位数落在 组(填组别) ;
    (3)如果按照学校要求,学生平均每天的睡眠时间应不少于 9 h,请估计该校学生中睡眠时间符合要求的人数.
    15、(8分)小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式已知小诚家距离学校2200米,他步行的平均速度为80米分,跑步的平均速度为200米分若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?
    16、(8分)求不等式组的正整数解.
    17、(10分)解方程:2x2﹣4x+1=0.(用配方法)
    18、(10分)数学活动课上,老师提出了一个问题:如图1,A、B两点被池塘隔开,在AB外选一点,连接AC和BC,怎样测出A、B两点的距离?
    (活动探究)学生以小组展开讨论,总结出以下方法:
    ⑴如图2,选取点C,使AC=BC=a,∠C=60°;
    ⑵如图3,选取点C,使AC=BC=b,∠C=90°;
    ⑶如图4,选取点C,连接AC,BC,然后取AC、BC的中点D、E,量得DE=c…
    (活动总结)
    (1)请根据上述三种方法,依次写出A、B两点的距离.(用含字母的代数式表示)并写出方法⑶所根据的定理.AB=________,AB=________,AB=________.定理:________.
    (2)请你再设计一种测量方法,(图5)画出图形,简要说明过程及结果即可.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若分式在实数范围内有意义,则的取值范围是_____.
    20、(4分)若一个三角形的三边长为3、4、x,则使此三角形是直角三角形的x的值是__________.
    21、(4分)如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是_______度.
    22、(4分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.若△BCD是等腰三角形,则四边形BDFC的面积为_______________。
    23、(4分)已知关于的方程有解,则的值为____________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知点A(﹣2,0),点B(6,0),点C在第一象限内,且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD于点E,交OC于点E
    (1)求直线BD的解析式;(2)求线段OF的长;(3)求证:BF=OE.
    25、(10分)某校为了解八年级男生立定跳远测试情况,随机抽取了部分八年级男生的测试成绩进行统计,根据评分标准,将他们的成绩分为优秀、良好、及格、不及格四个等级,以下是根据调查结果绘制的统计图表的一部分.
    根据以上信息,解答下列问题:
    (1)被调查的男生中,成绩等级为不及格的男生人数有__________人,成绩等级为良好的男生人数占被调查男生人数的百分比为__________%;
    (2)被调查男生的总数为__________人,条形统计图中优秀的男生人数为__________人;
    (3)若该校八年级共有300名男生,根据调查结果,估计该校八年级男生立定跳远测试成绩为良好和优秀的男生人数.
    26、(12分)如图,一次函数的图像经过点A(-1,0),并与反比例函数()的图像交于B(m,4)
    (1)求的值;
    (2)以AB为一边,在AB的左侧作正方形,求C点坐标;
    (3)将正方形沿着轴的正方向,向右平移n个单位长度,得到正方形,线段的中点为点,若点和点同时落在反比例函数的图像上,求n的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.
    【详解】
    在Rt△ACD中,∠A=45°,CD=1,
    则AD=CD=1,
    在Rt△CDB中,∠B=30°,CD=1,
    则BD=,
    故AB=AD+BD=+1.
    故选C.
    本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.
    2、D
    【解析】试题解析:A、不正确,矩形的四边不相等,菱形的四个角不相等;
    B、不正确,菱形的对角线不相等;
    C、不正确,矩形的对角线不垂直;
    D、正确,三者均具有此性质;
    故选D.
    3、D
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.
    【详解】
    解:∵E、F分别是AC、DC的中点,
    ∴EF是△ADC的中位线,
    ∴AD=2EF=2×3=6,
    ∴菱形ABCD的周长=4AD=4×6=1.
    故选:D.
    本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
    4、D
    【解析】
    如图,连接BD交AC于点O,根据菱形的性质和等腰三角形的性质可得AO的长、BO=DO、AC⊥BD、∠DAC =30°,然后利用30°角的直角三角形的性质和勾股定理可求出OD的长,即得BD的长,再根据菱形的面积=对角线乘积的一半计算即可.
    【详解】
    解:如图,连接BD交AC于点O,∵四边形ABCD是菱形,
    ∴AD=CD,AO=CO=,BO=DO,AC⊥BD,
    ∵∠ADC=120°,∴∠DAC=∠ACD=30°,∴AD=2DO,
    设DO=x,则AD=2x,在直角△ADO中,根据勾股定理,得,解得:x=3,(负值已舍去)∴BD=6,
    ∴菱形ABCD的面积=.
    故选:D.
    本题考查了菱形的性质、等腰三角形的性质、勾股定理和30°角的直角三角形的性质等知识,属于常见题型,熟练掌握上述基本知识是解题的关键.
    5、C
    【解析】
    先根据二次根式有意义的条件求出a-1<0,再根据二次根式的性质把根号外的因式平方后移入根号内,即可得出答案.
    【详解】
    ∵要是根式有意义,必须-≥0,
    ∴a-1<0,
    ∴(a-1)=-,
    故选C.
    本题考查了二次根式的性质的应用,注意:当m≥0时,m=,当m≤0时,m=-.
    6、B
    【解析】
    根据分子为0,分母不为0,存在同时满足两个条件时的x,则分式方程有解..
    【详解】
    A.当,则且,当时,,当时,,所以该方程无解;
    B.当,则且,当时,当时,所以该方程的解为;
    C.因为无解,所以该方程无解;
    D.当,则且,当时,当时,所以该方程无解.
    故选B.
    本题考查解分式方程,分式的值要为0,则分子要为0同时分母不能为0.
    7、B
    【解析】
    因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.
    【详解】
    解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;
    B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;
    C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;
    D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;
    故选B.
    点评:此题考查了函数关系式,主要考查了函数的定义和结合几何图形列函数关系式.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
    8、A
    【解析】
    根据最简二次根式的定义,对每一个选项进行化简即可.
    【详解】
    A、,与是同类二次根式,可以合并,该选项正确;
    B、,与不是同类二次根式,不可以合并,该选项错误;
    C、与不是同类二次根式,不可以合并,该选项错误;
    D、,与不是同类二次根式,不可以合并,该选项错误;
    故选择:A.
    本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、760
    【解析】
    设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,工作日期间一天的销售收入为:8x+6x+5x=19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x=29.1x元,周六销售收入与工作日期间一天销售收入的差为:29.1x-19x=10.1x元,由于发生一起错单,收入的差为403元,因此,403加减一瓶饮料的差价一定是10.1的整数倍,所以这起错单发生在A、B饮料上(A、B一瓶的差价为1元),且是消费者付A饮料的钱,取走的是B饮料;于是可以列方程求出C的数量,进而求出工作日期间一天的销售收入.
    【详解】
    设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,
    工作日期间一天的销售收入为:8x+6x+5x=19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x=29.1x元,
    周六销售收入与工作日期间一天销售收入的差为:29.1x-19x=10.1x元,
    由于发生一起错单,收入的差为403元,因此,403加减一瓶饮料的差价一定是10.1的整数倍,
    所以这起错单发生在A、B饮料上(A、B一瓶的差价为1元),且是消费者付A饮料的钱,取走的是B饮料;
    于是有:10.1x-(3-2)=403
    解得:x=40.
    工作日期间一天的销售收入为:19×40=760元.
    故答案为:760.
    考查销售过程中的数量之间的关系,以及方程的整数解得问题,通过探索、推理、验证得到答案.
    10、1
    【解析】
    根据边之间的关系,运用勾股定理,列方程解答即可.
    【详解】
    由题意可设两条直角边长分别为x,2x,
    由勾股定理得x2+(2x)2=(1)2,
    解得x1=1,x2=-1舍去),
    所以较短的直角边长为1.
    故答案为:1
    本题考查了一元二次方程和勾股定理的应用,解题的关键是根据勾股定理得到方程,转化为方程问题.
    11、
    【解析】
    分析: 过A作AE⊥x轴,过B作BD⊥AE,利用同角的余角相等得到一对角相等,再由一对角相等,且AE=BD=b,OE=AD=a,进而表示出ED和OE+BD的长,即可表示出B坐标,由A与B都在反比例函数图象上,得到A与B横纵坐标乘积相等,列出关系式,变形后即可求出的值.
    详解:过A作AE⊥x轴,过B作BD⊥AE,
    ∵∠OAB=90°,
    ∴∠OAE+∠BAD=90°,
    ∵∠AOE+∠OAE=90°,
    ∴∠BAD=∠AOE,
    在△AOE和△BAD中,
    ∴△AOE≌△BAD(AAS),
    ∴AE=BD=b,OE=AD=a,
    ∴DE=AE-AD=b-a,OE+BD=a+b,
    则B(a+b,b-a),
    ∵A与B都在反比例图象上,得到ab=(a+b)(b-a),整理得:b2-a2=ab,
    即,
    ∵△=1+4=5,
    ∴,
    ∵点A(a,b)为第一象限内一点,
    ∴a>0,b>0,
    则,
    故答案为:.
    点睛:本题主要考查反比例函数图象上点的坐标特征,解决本题的关键是构造全等三角形根据反比例函数上点的坐标特征列关系式.
    12、x1=0,x2=1.
    【解析】
    试题分析:首先把x移项,再把方程的左面分解因式,即可得到答案.
    解:x2=x,
    移项得:x2﹣x=0,
    ∴x(x﹣1)=0,
    x=0或x﹣1=0,
    ∴x1=0,x2=1.
    故答案为:x1=0,x2=1.
    考点:解一元二次方程-因式分解法.
    13、乙
    【解析】
    由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.
    【详解】
    解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,
    ∴甲淘汰;
    乙成绩=85×60%+80×30%+75×10%=82.5,
    丙成绩=80×60%+90×30%+73×10%=82.3,
    乙将被录取.
    故答案为:乙.
    本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.
    三、解答题(本大题共5个小题,共48分)
    14、(1)7,18,17.5%,45%;(2)3;(3)440人.
    【解析】
    (1)根据40名学生平均每天的睡眠时间即可得出结果;
    (2)由中位数的定义即可得出结论;
    (3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.
    【详解】
    (1)7≤t<8时,频数为m=7;
    9≤t<10时,频数为n=18;
    ∴a=×100%=17.5%;b=×100%=45%;
    故答案为7,18,17.5%,45%;
    (2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,
    ∴落在第3组;
    故答案为3;
    (3)该校学生中睡眠时间符合要求的人数为800×=440(人);
    答:估计该校学生中睡眠时间符合要求的人数为440人.
    本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.
    15、小诚至少需要跑步5分钟.
    【解析】
    设他需要跑步x分钟,根据他要在不超过20分钟的时间内从家到达学校可以列出相应的不等式,从而可以解答本题.
    【详解】
    设他需要跑步x分钟,由题意可得

    解得,.
    答:小诚至少需要跑步5分钟.
    本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解答本题的关键.
    16、正整数解为3,1.
    【解析】
    先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:
    由①得:x>2,
    由②得:x≤1,
    ∴原不等式组的解集为2<x≤1,
    ∴不等式组的正整数解为3,1.
    本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.
    17、x1=1+ ,x2=1﹣.
    【解析】
    试题分析:首先移项,再将二次项系数化为1,然后配方解出x即可.
    试题解析:2x2﹣4x+1=0,
    移项,得2x2﹣4x=-1,
    二次项系数化为1,得x2﹣2x=-,
    配方,得x2﹣2x+12=-+12,即(x-1)2=,
    解得,x-1=±,
    即x1=1+,x2=1-.
    点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)解出未知数.
    18、见解析
    【解析】
    试题分析:(1)分别利用等边三角形的判定方法以及直角三角形的性质和三角形中位线定理得出答案;
    (2)直接利用利用勾股定理得出答案.
    解:(1)∵AC=BC=a,∠C=60°,
    ∴△ABC是等边三角形,
    ∴AB=a;
    ∵AC=BC=b,∠C=90°,
    ∴AB=b,
    ∵取AC、BC的中点D、E,
    ∴DE∥AB,DE=AB,
    量得DE=c,则AB=2c(三角形中位线定理);
    故答案为a,b,2c,三角形中位线定理;
    (2)方法不唯一,如:图5,选取点C,
    使∠CAB=90°,AC=b,BC=a,
    则AB=.
    【点评】此题主要考查了应用设计与作图,正确应用勾股定理是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、x≠1
    【解析】
    【分析】根据分式有意义的条件进行求解即可得答案.
    【详解】由题意得:1-x≠0,
    解得:x≠1,
    故答案为x≠1.
    【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.
    20、1或 .
    【解析】
    分析: 由于直角三角形的斜边不能确定,故应分4是斜边或直角边两种情况进行讨论.
    详解:当4是直角三角形的斜边时,32+x2=42,解得x=;
    当4是直角三角形的直角边时,32+42=x2,解得x=1.
    故使此三角形是直角三角形的x的值是1或.
    故答案为: 1或.
    点睛:本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
    21、35.
    【解析】
    利用四边形内角和得到∠BAD’,从而得到∠α
    【详解】
    如图,由矩形性质得到∠BAD’+∠α=90°;因为∠2=∠1=125°,所以∠BAD’=180°-∠2=55°,所以∠α=90°-55°=35°,故填35
    本题主要考查矩形性质和四边形内角和性质等知识点,本题关键在于找到∠2与∠BAD互补
    22、5或1.
    【解析】
    先证明四边形BDFC是平行四边形;当△BCD是等腰三角形求面积时,需分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=5,然后求出DG=3,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=4,矛盾.
    【详解】
    证明:∵∠A=∠ABC=90°,
    ∴BC∥AD,
    ∴∠CBE=∠DFE,
    在△BEC与△FED中,

    ∴△BEC≌△FED,
    ∴BE=FE,
    又∵E是边CD的中点,
    ∴CE=DE,
    ∴四边形BDFC是平行四边形;
    (1)BC=BD=5时,由勾股定理得,AB===,
    所以,四边形BDFC的面积=5×=5 ;
    (2)BC=CD=5时,过点C作CG⊥AF于G,则四边形AGCB是矩形,
    所以,AG=BC=5,
    所以,DG=AG-AD=5-2=3,由勾股定理得,CG===4,
    所以,四边形BDFC的面积=4×5=1;
    (3)BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=4,矛盾,此时不成立;
    综上所述,四边形BDFC的面积是5或1.
    故答案为:5或1.
    本题考查平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.
    23、1
    【解析】
    分式方程去分母转化为整式方程,把x=2代入整式方程计算即可求出a的值.
    【详解】
    去分母得:a﹣x=ax﹣3,把x=2代入得:a﹣2=2a﹣3,解得:a=1.
    故答案为:1.
    本题考查了分式方程的解,始终注意分母不为0这个条件.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(1)OF= 1;(3)见解析.
    【解析】
    (1)在Rt△ABD中,通过解直角三角形可求出OD的长,进而可得出点D的坐标,再根据点B,D的坐标,利用待定系数法可求出直线BD的解析式;
    (1)由等边三角形的性质结合三角形内角和定理,可得出∠BAE=∠CFE=30°,进而可得出∠OAF=∠OFA=30°,再利用等角对等边可得出线段OF的长;
    (3)通过解含30度角的直角三角形可求出BE的长,结合BC的长可得出CE=OF=1,由OB=CO,∠BOF=∠OCE及OF=CE可证出△OBF≌△COE(SAS),再利用全等三角形的性质可得出BF=OE.
    【详解】
    (1)∵△OBC为等边三角形,
    ∴∠ABC=60°.
    在Rt△ABD中,tan∠ABD=,即,
    ∴AD=,
    ∴点D的坐标是(0,).
    设BD的解析式是y=kx+b(k≠0),
    将B(6,0),D(0,)代入y=kx+b,得:,
    解得:,
    ∴直线BD的解析式为.
    (1)解:∵AE⊥BC,△OBC是正三角形,
    ∴∠BAE=∠CFE=30°,
    ∴∠OAF=∠OFA=30°,
    ∴OF=OA=1,即OF的长为1.
    (3)证明:∵AB=8,∠OBC=60°,AE⊥BC,
    ∴BE=AB=4,
    ∴CE=BC-BE=6-4=1,
    ∴OF=CE.
    在△OBF和△COE中,,
    ∴△OBF≌△COE(SAS),
    ∴BF=OE.
    本题考查了等边三角形、解直角三角形、待定系数法求一次函数解析式、等腰三角形的性质、三角形内角和定理以及全等三角形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数的解析式;(1)通过角的计算,找出∠OAF=∠OFA;(3)利用全等三角形的判定定理SAS,证出△OBF≌△COE.
    25、(1)3,24;(2)50,28;(3)估计该校八年级男生立定跳远测试成绩在良好以上的男生人数为240人.
    【解析】
    (1)由统计图表可直接看出.
    (2)被调查的男生总数=不及格的人数÷它对应的比例,条形统计图中优秀的男生人数:用总数把其他三个等级的人数全部剪掉即可.
    (3)由(1)(2)可知,优秀56%,良好24%,该校八年级男生成绩等级为“良好”和“优秀”的学生人数=300×(良好占比+优秀占比).
    【详解】
    解:(1)3,24
    (2)被调查的男生总数3÷6%=50(人),
    条形统计图中优秀的男生人数:
    (3)该校八年级男生成绩等级为“良好”和“优秀”的学生人数 .
    答:估计该校八年级男生立定跳远测试成绩在良好以上的男生人数为240人.
    本题考查的是表格统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.表格统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    26、(1)k1=4;(2)C点坐标为(-3,6);(3)n=.
    【解析】
    (1)把A点坐标代入y=2x+b,可求出b值,把B(m,4)代入可求出m值,代入即可求出k1的值;(2)过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,利用AAS可证明△CBG≌△BAF,可得AF=BG,CG=BF,根据A、B两点坐标即可得C点坐标;(3)由A、B、C三点坐标可得向右平移n个单位后A1、B1、C1的坐标,即可得E点坐标,根据k2=xy列方程即可求出n值.
    【详解】
    (1)∵一次函数的图像经过点A(-1,0),
    ∴-2+b=0,
    解得:b=2,
    ∵点B(m,4)在一次函数y=2x+2上,
    ∴4=2m+2,
    解得:m=1,
    ∵B(1,4)在反比例函数图象上,
    ∴k1=4.
    (2)如图,过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,
    ∵A(-1,0),B(1,4),
    ∴AF=2,BF=4,
    ∴∠GCB+∠CBG=90°,
    ∵四边形ABCD是正方形,
    ∴∠ABC=90°,
    ∴∠ABF+∠CBG=90°,
    ∴∠GCB=∠ABF,
    又∵BC=AB,∠AFB=∠CGB=90°,
    ∴△CBG≌△BAF,
    ∴BG=AF=2,CG=BF=4,
    ∴GF=6,
    ∵在AB的左侧作正方形ABCD,
    ∴C点坐标为(-3,6).
    (3)∵正方形ABCD沿x轴的正方向,向右平移n个单位长度,
    ∴A1(-1+n,0),B1(1+n,4),C1(-3+n,6),
    ∵线段A1B1的中点为点E,
    ∴E(n,2),
    ∵点和点E同时落在反比例函数的图像上,
    ∴k2=2n=6(-3+n)
    解得:n=.
    本题考查一次函数与反比例函数综合,涉及的知识点有平移的性质、全等三角形的性质,一次函数和反比例函数图象上点的坐标特征及正方形的性质,熟练掌握性质和定理是解题关键.
    题号





    总分
    得分
    批阅人
    物体的质量(kg)
    0
    1
    2
    3
    4
    5
    弹簧的长度(cm)
    10
    12.5
    15
    17.5
    20
    22.5
    笔试
    面试
    体能

    83
    79
    90

    85
    80
    75

    80
    90
    73
    组别
    睡眠时间分组
    人数(频数)
    1
    7≤t<8
    m
    2
    8≤t<9
    11
    3
    9≤t<10
    n
    4
    10≤t<11
    4
    ∠AOE=∠BAD,
    ∠AEO=∠BDA=90°
    AO=BA

    相关试卷

    四川省2025届九上数学开学统考试题【含答案】:

    这是一份四川省2025届九上数学开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年四川省甘孜县九年级数学第一学期开学综合测试试题【含答案】:

    这是一份2024-2025学年四川省甘孜县九年级数学第一学期开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省甘孜藏族自治州甘孜县2023-2024学年九上数学期末质量跟踪监视试题含答案:

    这是一份四川省甘孜藏族自治州甘孜县2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,的值等于,已知关于x的函数y=k等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map