搜索
    上传资料 赚现金
    英语朗读宝

    上海市复旦初级中学2024年九上数学开学复习检测模拟试题【含答案】

    上海市复旦初级中学2024年九上数学开学复习检测模拟试题【含答案】第1页
    上海市复旦初级中学2024年九上数学开学复习检测模拟试题【含答案】第2页
    上海市复旦初级中学2024年九上数学开学复习检测模拟试题【含答案】第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    上海市复旦初级中学2024年九上数学开学复习检测模拟试题【含答案】

    展开

    这是一份上海市复旦初级中学2024年九上数学开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)随着科技水平的提高,某种电子产品的价格呈下降趋势,今年年底的价格是两年前的.设这种电子产品的价格在这两年中平均每年下降x,则根据题意可列出方程( )
    A.1﹣2xB.2(1﹣x)C.(1﹣x)2D.x(1﹣x)
    2、(4分)下列各式从左到右的变形属于因式分解的是( )
    A.B.
    C.D.
    3、(4分)若式子在实数范围内有意义,则的取值范围是( )
    A.B.C.D.
    4、(4分)下列点在直线y=-x+1上的是 ( )
    A.(2,-1)B.(3,3)C.(4,1)D.(1,2)
    5、(4分)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )
    A.9人B.10人C.11人D.12人
    6、(4分)下列各数中,能使不等式x﹣3>0成立的是( )
    A.﹣3B.5C.3D.2
    7、(4分)在实数范围内有意义,则应满足的条件是( )
    A.B.C.D.
    8、(4分)在平面直角坐标系中,把直线y=3x向左平移2个单位长度,平移后的直线解析式是( )
    A.y=3x+2B.y=3x﹣2C.y=3x+6D.y=3x﹣6
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知反比例函数 y=的图像都过A(1,3)则m=______.
    10、(4分)如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“_____”.
    11、(4分)如图,正方形ABCD的对角线AC、BD相交于点O,DE平分∠ODA交OA于点E,若AB=2+,则线段OE的长为_____.
    12、(4分)如果将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为__________.
    13、(4分)在4个不透明的袋子中分别装有10个球,其中,1号袋中有10个红球,2号袋中有8个红球.2个白球,3号袋中有5个红球.5个白球,4号袋中有2个红球,8个白球.从各个袋子中任意摸出1个球,摸到白球的可能性最大的是_____(填袋子号).
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
    (1)小明发现DG=BE且DG⊥BE,请你给出证明.
    (2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.
    15、(8分)分式化简:(a-)÷
    16、(8分)近几年杭州市推出了“微公交”,“微公交”是国内首创的纯电动汽车租赁服务.它作为一种绿色出行方式,对缓解交通堵塞和停车困难,改善城市大气环境,都可以起到积极作用.据了解某租赁点拥有“微公交”辆.据统计,当每辆车的年租金为千元时可全部租出;每辆车的年租金每增加千元,未租出的车将增加辆.
    (1)当每辆车的年租金定为千元时,能租出多少辆?
    (2)当每辆车的年租金增加多少千元时,租赁公司的年收益(不计车辆维护等其他费用)可达到千元?
    17、(10分)某开发公司生产的960件新产品,需要精加工后,才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元.
    (1)求甲、乙两个工厂每天各能加工多少件新产品.
    (2)公司制定产品加工方案如下:可以由每个厂家单独完成;也可以由两个厂家同时合作完成.在加工过程中,公司需派一名工程师每天到厂进行技术指导,并负担每天5元的误餐补助费. 请你帮助公司选择一种既省时又省钱的加工方案,并说明理由.
    18、(10分)如图,在中,点为边的中点,点在内,平分点在上,.
    (1)求证:四边形是平行四边形;
    (2)线段之间具有怎样的数量关系?证明你所得到的结论.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,-3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y= 的图象上,则m的值为________.
    20、(4分)如图,在▱ABCD中,,,则______.
    21、(4分)因式分解:_________.
    22、(4分)如图,矩形中,,延长交于点,延长交于点,过点作,交的延长线于点,,则=_________.
    23、(4分)比较大小:2____3(填“ >、<、或 = ”).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF=90°,延长EF交BC的延长线于点G;
    (1)求证:△ABE∽△EGB;
    (2)若AB=4,求CG的长.
    25、(10分)已知两条线段长分别是一元二次方程的两根,
    (1)解方程求两条线段的长。
    (2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。
    (3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。
    26、(12分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    设这种电子产品的价格在这两年中平均每年下降x,该电子产品两年前的价格为a元,根据该电子产品两年前的价格及今年的价格,即可得出关于x的一元二次方程,此题得解.
    【详解】
    设这种电子产品的价格在这两年中平均每年下降x,该电子产品两年前的价格为a元,根据题意得:
    a(1﹣x)2a,
    即(1﹣x)2,
    故选C.
    本题考查了一元二次方程的应用,弄清题意,找准等量关系,正确列出一元二次方程是解题的关键.
    2、D
    【解析】
    根据因式分解的定义依次判断各项即可解答.
    【详解】
    选项A,是整式的乘法运算,不是因式分解;
    选项B,该等式右边没有化为几个整式的乘积形式,不是因式分解;
    选项C,该等式右边没有化为几个整式的乘积形式,不是因式分解;
    选项D,符合因式分解的定义,是因式分解.
    故选D.
    本题考查了因式分解的定义,熟练运用因式分解的定义是解决问题的关键.
    3、D
    【解析】
    由二次根式的性质可以得到x-1≥0,由此即可求解.
    【详解】
    解:依题意得:x-1≥0,
    ∴x≥1.
    故选:D.
    此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.
    4、A
    【解析】
    分析:分别把点代入直线y=-x+1,看是否满足即可.
    详解:当x=1时,y=-x+1=0;
    当x=2时,y=-x+1=-1;
    当x=3时,y=-x+1=-2;
    当x=4时,y=-x+1=-3;
    所以点(2,-1)在直线y=-x+1上.
    故选A.
    点睛:本题主要考查了一次函数上的坐标特征,关键在于理解一次函数上的坐标特征.
    5、C
    【解析】
    设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.
    【详解】
    设参加酒会的人数为x人,依题可得:
    x(x-1)=55,
    化简得:x2-x-110=0,
    解得:x1=11,x2=-10(舍去),
    故答案为C.
    考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.
    6、B
    【解析】
    根据不等式的解集的概念即可求出答案.
    【详解】
    解:不等式x–1>0的解集为:x>1.
    故选B.
    本题考查不等式的解集,解题的关键是正确理解不等式的解的概念(使不等式成立的未知数的值叫做不等式的解).
    7、D
    【解析】
    根据二次根式有意义的条件解答即可.
    【详解】
    解:由题意得:x+1≥0,解得x≥-1,故答案为D.
    本题考查了二次根式有意义的条件,即牢记二次根式有意义的条件为被开方数大于等于零是解答本题的关键.
    8、C
    【解析】
    根据“左加右减”的原则进行解答即可.
    【详解】
    解:由“左加右减”的原则可知,把直线y=3x向左平移2个单位长度所得的直线的解析式是y=3(x+2)=3x+1.即y=3x+1,
    故选:C.
    本题考查的是一次函数的图象与几何变换,熟知“左加右减”的原则是解答此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    把点A(1,1)代入函解析式即可求出m的值.
    【详解】
    解:把点A(1,1)代入函解析式得1=,解得m=1.
    故答案为:1.
    本题考查反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解题的关键.
    10、HL
    【解析】
    分析: 需证△BCD和△CBE是直角三角形,可证△BCD≌△CBE的依据是HL.
    详解: ∵BE、CD是△ABC的高,
    ∴∠CDB=∠BEC=90°,
    在Rt△BCD和Rt△CBE中,
    BD=EC,BC=CB,
    ∴Rt△BCD≌Rt△CBE(HL),
    故答案为HL.
    点睛: 本题考查全等三角形判定定理中的判定直角三角形全等的HL定理.
    11、1.
    【解析】
    分析题目需要添加辅助线,先过E作EF⊥AD于F,设OE=x,则EH=AH=x,AE=x,AO=x+x,在Rt△ABO中,根据勾股定理列方程求解即可.
    【详解】
    如图,过E作EF⊥AD于F,则△AEH是等腰直角三角形,
    ∵DE平分∠ODA,EO⊥DO,EH⊥DH,
    ∴OE=HE,
    设OE=x,则EH=AH=x,AE=x,AO=x+x,
    在Rt△ABO中,
    AO2+BO2=AB2,
    ∴(x+x)2+(x+x)2=(2+)2,
    解得x=1(负值已舍去),
    ∴线段OE的长为1.
    故答案为:1.
    此题考查正方形的性质,解决问题的关键是作辅助线构造直角三角形,运用勾股定理列方程进行计算;
    12、
    【解析】
    根据一次函数图象的平移规律:上加下减,左加右减进行平移即可得出答案.
    【详解】
    将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为,即,
    故答案为:.
    本题主要考查一次函数图象的平移,掌握一次函数图象的平移规律是解题的关键.
    13、1
    【解析】
    要求可能性的大小,只需求出各自所占的比例大小即可.
    【详解】
    解:1号袋子摸到白球的可能性=0;
    2号袋子摸到白球的可能性=;
    3号袋子摸到白球的可能性=;
    1号个袋子摸到白球的可能性=,
    所以摸到白球的可能性最大的是1.
    本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)证明见解析;(2)S△ADG=1+.
    【解析】
    (1)利用正方形得到条件,判断出△ADG≌△ABE,根据全等三角形的性质即可得到结论;
    (2)利用正方形的性质在Rt△AMD中,∠MDA=45°,AD=2从而得出AM=DM=,在Rt△AMG中,AM2+GM2=AG2从而得出GM=即可.
    【详解】
    (1)解:如图1,延长EB交DG于点H,
    ∵四边形ABCD与四边形AEFG是正方形,
    ∴AD=AB,∠DAG=∠BAE=90°,AG=AE
    在△ADG与△ABE中,
    ∴△ADG≌△ABE(SAS),
    ∴∠AGD=∠AEB,
    ∵△ADG中∠AGD+∠ADG=90°,
    ∴∠AEB+∠ADG=90°,
    ∵△DEH中,∠AEB+∠ADG+∠DHE=180°,
    ∴∠DHE=90°,
    ∴DG⊥BE.
    (2)解:如图2,过点A作AM⊥DG交DG于点M,
    ∠AMD=∠AMG=90°,
    ∵BD是正方形ABCD的对角,
    ∴∠MDA=45°
    在Rt△AMD中,∵∠MDA=45°,AD=2,
    ∴AM=DM=,
    在Rt△AMG中,
    ∵AM2+GM2=AG2,
    ∴GM=,
    ∵DG=DM+GM=,
    ∴S△ADG==1+.
    此题考查了旋转的性质和正方形的性质,用到的知识点是旋转的性质、全等三角形的判定,勾股定理和正方形的性质,关键是根据题意画出辅助线,构造直角三角形.
    15、a-b
    【解析】
    利用分式的基本性质化简即可.
    【详解】
    ===.
    此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.
    16、(1)17;(2)每辆车的年租金增加千元时,年收益可达到千元.
    【解析】
    (1)1.5-9=1.5,由题意得,当租金为1.5千元时有3辆没有租出,然后计算即可;
    (2)设每辆车的年租金增加x千元时,直接根据收益=176千元作为等量关系列方程求解即可.
    【详解】
    解:(1)(辆).
    (2)设每辆车的年租金增加千元,
    整理得,
    (舍),.
    即每辆车的年租金增加千元时,年收益可达到千元.
    本题考查了一元二次方程的应用,审清题意,找出合适的等量关系是解答本题的关键.
    17、 (1)甲、乙两个工厂每天各能加工16和24件.(2)合作.
    【解析】
    解:(1)设甲工厂每天能加工件产品,
    则乙工厂每天能加工件产品,根据题意,得
    18、(1)见详解;(2),证明见详解.
    【解析】
    (1)延长CE交AB于点G,证明,可得,结合题目条件利用中位线中的平行即可求证;
    (2)根据已知条件易得,根据全等可得,从而得到之间的数量关系.
    【详解】
    (1)延长CE交AB于点G,如图所示:
    ∵平分

    在中
    ∵点为边的中点

    ∴DE为的中位线


    ∴四边形是平行四边形
    (2)∵四边形是平行四边形

    ∵D、E分别是BC、GC的中点
    本题考查了平行四边形的判定和性质,全等三角形的性质,中位线的性质等知识点,解题的关键在于判断四边形是平行四边形,DE为的中位线,,从而可解此题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据中点的坐标和平移的规律,利用点在函数图像上,可解出m的值.
    【详解】
    △ABC的三个顶点为A(-1,1),B(-1,3),C(-3,3)
    ∴AB的中点(-1,2),BC的中点(-2,0),AC的中点(-2,-1)
    ∴AB边的中点平移后为(-1+m,2),AC中点平移后为(-2+m,-1)
    ∵△ABC某一边中点落在反比例函数上
    ∴2(-1+m)=3或-1×(-2+m)=3
    m=2.5或-1(舍去).
    故答案是:.
    考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    20、.
    【解析】
    先证明是等腰直角三角形,再由勾股定理求出AD,即可得出BC的长.
    【详解】
    四边形ABCD是平行四边形,
    ,,,
    ,,
    即是等腰直角三角形,

    故答案为:.
    本题考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明是等腰直角三角形是解决问题的关键.
    21、
    【解析】
    直接提取公因式即可.
    【详解】

    故答案为:.
    本题考查了因式分解——提取公因式法,掌握知识点是解题关键.
    22、
    【解析】
    通过四边形ABCD是矩形以及,得到△FEM是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.
    【详解】
    解:如图,设NE交AD于点K,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,∠ABC=90°,
    ∴∠MFE=∠FCB,∠FME=∠EBC
    ∵,
    ∴△BCE为等边三角形,
    ∴∠BEC=∠ECB=∠EBC=60°,
    ∵∠FEM=∠BEC,
    ∴∠FEM=∠MFE=∠FME=60°,
    ∴△FEM是等边三角形,FM=FE=EM=2,
    ∵EN⊥BE,
    ∴∠NEM=∠NEB=90°,
    ∴∠NKA=∠MKE=30°,
    ∴KM=2EM=4,NK=2AN=6,
    ∴在Rt△KME中,KE=,
    ∴NE=NK+KE=6+,
    ∵∠ABC=90°,
    ∴∠ABE=30°,
    ∴BN=2NE=12+,
    ∴BE=,
    ∴BC=BE=,
    故答案为:
    本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.
    23、<
    【解析】
    试题分析:将两式进行平方可得:=12,=18,因为12<18,则<.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)证明见解析;(2)CG=6.
    【解析】
    (1)由正方形的性质与已知得出∠A=∠BEG,证出∠ABE=∠G,即可得出结论;
    (2)由AB=AD=4,E为AD的中点,得出AE=DE=2,由勾股定理得出BE=,由△ABE∽△EGB,得出,求得BG=10,即可得出结果.
    【详解】
    (1)证明:∵四边形ABCD为正方形,且∠BEG=90°,
    ∴∠A=∠BEG,
    ∵∠ABE+∠EBG=90°,∠G+∠EBG=90°,
    ∴∠ABE=∠G,
    ∴△ABE∽△EGB;
    (2)∵AB=AD=4,E为AD的中点,
    ∴AE=DE=2,
    在Rt△ABE中,BE=,
    由(1)知,△ABE∽△EGB,
    ∴,即:,
    ∴BG=10,
    ∴CG=BG﹣BC=10﹣4=6.
    本题主要考查了四边形与相似三角形的综合运用,熟练掌握二者相关概念是解题关键
    25、(1)2和6;(2);(3)
    【解析】
    (1)求解该一元二次方程即可;
    (2)先确定等腰三角形的边,然后求面积即可;
    (3)设分为两段分别是和,然后用勾股定理求出x,最后求面积即可.
    【详解】
    解:(1)由题意得,
    即:或,
    ∴两条线段长为2和6;
    (2)由题意,可知分两段为分别为3、3,则等腰三角形三边长为2,3,3,
    由勾股定理得:该等腰三角形底边上的高为:
    ∴此等腰三角形面积为=.
    (3)设分为及两段
    ∴,
    ∴,
    ∴面积为.
    本题考查了一元二次方程、等腰三角形、直角三角形等知识,考查知识点较多,灵活应用所学知识是解答本题的关键.
    26、详见解析
    【解析】
    根据平行四边形的性质和已知条件证明△ABE≌△CDF,再利用全等三角形的性质:即可得到AE=CF.
    【详解】
    证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF. (其他证法也可)
    题号





    总分
    得分

    相关试卷

    2025届上海市外国语大附属外国语学校九上数学开学复习检测模拟试题【含答案】:

    这是一份2025届上海市外国语大附属外国语学校九上数学开学复习检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年上海市复旦初级中学数学九上开学质量跟踪监视试题【含答案】:

    这是一份2024年上海市复旦初级中学数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年上海市部分区九上数学开学检测模拟试题【含答案】:

    这是一份2024年上海市部分区九上数学开学检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map