![山东省烟台市招远市金岭镇邵家初级中学2025届九年级数学第一学期开学综合测试模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16288280/0-1729812310152/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省烟台市招远市金岭镇邵家初级中学2025届九年级数学第一学期开学综合测试模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16288280/0-1729812310180/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省烟台市招远市金岭镇邵家初级中学2025届九年级数学第一学期开学综合测试模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16288280/0-1729812310218/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山东省烟台市招远市金岭镇邵家初级中学2025届九年级数学第一学期开学综合测试模拟试题【含答案】
展开
这是一份山东省烟台市招远市金岭镇邵家初级中学2025届九年级数学第一学期开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)直角三角形的两直角边长分别为6和8,则斜边上的中线长是( )
A.10B.2.5C.5D.8
2、(4分)如图,在中,已知,分别为边,的中点,连结,若,则等于( )
A.70ºB.67. 5ºC.65ºD.60º
3、(4分)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计 算剩下了 5 个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影 响这组数据的( )
A.平均数B.中位数C.极差D.众数
4、(4分)点(1,m),(2,n)都在函数y=﹣2x+1的图象上,则m、n的大小关系是( )
A.m=n B.m<n C.m>n D.不确定
5、(4分)某青年排球队12名队员的年龄情况如下表所示:
这12名队员的平均年龄是( )
A.18岁B.19岁C.20岁D.21岁
6、(4分)若关于的方程有增根,则的值是( )
A.B.C.D.
7、(4分)如图,已知▱ABCD的周长为20,∠ADC的平分线DE交AB于点E,若AD=4,则BE的长为( )
A.1B.1.5C.2D.3
8、(4分)据有关实验测定,当室温与人体正常体温(37℃)的比值为黄金比时,人体感到最舒适,这个室温约(精确到1℃)( )
A.21℃B.22℃C.23℃D.24℃
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,四边形ABCd为边长是2的正方形,△BPC为等边三角形,连接PD、BD,则△BDP的面积是_____.
10、(4分)已知是一元二次方程x2-4x+c=0的一个根,则方程的另一个根是______.
11、(4分)平行四边形的一个内角平分线将该平行四边形的一边分为和两部分,则该平行四边形的周长为______.
12、(4分)若直角三角形的斜边长为6,则这个直角三角形斜边的中线长________.
13、(4分)如图,以Rt△ABC的斜边BC为边在三角形ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=6,则△ABC的面积为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲、乙两位运动员在相同条件下各射靶10次,毎次射靶的成绩情况如图.
(1)请填写下表:
(2)请你从平均数和方差相结合对甲、乙两名运动员6次射靶成绩进行分析:
(3)教练根据两人的成绩最后选择乙去参加比赛,你能不能说出教练让乙去比赛的理由?(至少说出两条理由)
15、(8分)先化简,再求值:,其中是满足不等式组的整数解.
16、(8分)已知四边形中,,垂足为点,.
(1)如图1,求证:;
(2)如图2,点为上一点,连接,,求证:;
(3)在(2)的条件下,如图3,点为上一点,连接,点为的中点,分别连接,,+==,,求线段的长.
17、(10分)如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6cm,请利用因式分解求出剩余阴影部分的面积(结果保留π)
18、(10分)已知x=+1 , y=-1 , 求x2+xy+y2的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2018个三角形的周长为________.
20、(4分)在中,若,则_____________
21、(4分)如果最简二次根式和是同类二次根式,那么a=_______
22、(4分)已知,则=_____.
23、(4分)我市某一周每天的最低气温统计如下(单位:℃):﹣1,﹣4,6,0,﹣1,1,﹣1,则这组数据的众数为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,
(1)证明:CF=EB.
(2)证明:AB=AF+2EB.
25、(10分)如图,直线与直线相交于点A(3,1),与x轴交于点B.
(1)求k的值;
(2)不等式的解集是________________.
26、(12分)用适当的方法解一元二次方程:x2+4x+3=1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
已知直角三角形的两条直角边,根据勾股定理即可求斜边的长度,根据斜边中线长为斜边长的一半即可解题.
【详解】
已知直角三角形的两直角边为6、8,
则斜边长为=10,
故斜边的中线长为×10=5,
故选:C.
考查了勾股定理在直角三角形中的运用,考查了斜边中线长为斜边长的一半的性质,本题中正确的运用勾股定理求斜边的长是解题的关键.
2、A
【解析】
由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出的度数.
【详解】
∵D,E分别为AB,AC的中点,
∴DE是三角形的中位线,
∴DE∥BC,
∴∠AED=∠C=70°,
故选A
此题考查平行线的性质,三角形中位线定理,难度不大
3、B
【解析】
根据平均数、中位数、极差及众数的意义分别判断后即可确定正确的选项.
【详解】
去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数,
一定不会影响到中位数,
故选B.
此题考查统计量的选择,解题关键在于掌握各性质定义.
4、C
【解析】
一次函数y=kx+b(k≠0)的性质,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,根据此性质进行求解即可得.
【详解】
∵函数y=-2x+1中,k=-1<0,
∴y随x的增大而减小,
又∵1<2,
∴m>n,
故选C.
本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.
5、C
【解析】
根据平均数的公式 求解即可.
【详解】
这12名队员的平均年龄是
(岁),
故选:C.
本题主要考查平均数,掌握平均数的求法是解题的关键.
6、A
【解析】
根据分式方程有增根可求出x=3,去分母后将x=3代入求解即可.
【详解】
∵方程有增根,
∴x=3,
去分母,得
x+4=m+2(x-3),
把x=3代入,得
3+4=m,
∴m=7.
故选A.
本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.
7、C
【解析】
只要证明AD=AE=4,AB=CD=6即可解决问题.
【详解】
∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC=4,AB=CD=6,
∴∠AED=∠CDE,
∵DE平分∠ADC,
∴∠ADE=∠EDC,
∴∠ADE=∠AED,
∴AD=AE=4,
∴EB=AB﹣AE=6﹣4=1.
故选:C.
此题考查了平行四边形的性质,等腰三角形的判定等知识,熟练掌握平行四边形的性质是解本题的关键.
8、C
【解析】
根据黄金比的值可知,人体感到最舒适的温度应为37℃的0.1倍.
【详解】
解:根据黄金比的值得:37×0.1≈23℃.
故选C.
本题考查了黄金分割的知识,解答本题的关键是要熟记黄金比的值为≈0.1.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1-1
【解析】
如图,
过P作PE⊥CD,PF⊥BC,
∵正方形ABCD的边长是1,△BPC为正三角形,
∴∠PBC=∠PCB=60°,PB=PC=BC=CD=1,
∴∠PCE=30°
∴PF=PB•sin60°=1×=,PE=PC•sin30°=2,
S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×1×+×2×1﹣×1×1=1+1﹣8=1﹣1.
故答案为1﹣1.
点睛:本题考查正方形的性质以及等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PE及PF的长,再根据三角形的面积公式得出结论.
10、
【解析】
【分析】由于已知方程的一根,并且一次项系数也已知,根据两根之和公式可以求出方程的另一根.
【详解】设方程的另一根为x1,由x1+2-=4,得x1=2+.
故答案为2+.
【点睛】根据方程中各系数的已知情况,合理选择根与系数的关系式是解决此类题目的关键.
11、20cm或22cm.
【解析】
根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.
【详解】
如图:
∵ABCD为平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE为角平分线,
∴∠DAE=∠BAE,
∴∠AEB=∠BAE,
∴AB=BE,
∴①当BE=3cm,CE=4cm,AB=3cm,
则周长为20cm;
②当BE=4cm时,CE=3cm,AB=4cm,
则周长为22cm.
本题考查平行四边形的性质,分类讨论是关键.
12、1
【解析】
根据直角三角形的性质直接求解.
【详解】
解:直角三角形斜边长为6,
这个直角三角形斜边上的中线长为1.
故答案为:1.
本题考查了直角三角形的性质,解决此题的关键是熟记直角三角形斜边上的中线等于斜边的一半.
13、32
【解析】
在上截取,连接,根据、、、四点共圆,推出,证,推出,,得出等腰直角三角形,根据勾股定理求出,即可求出.由三角形面积公式即可求出Rt△ABC的面积.
【详解】
解:在上截取,连接,
四边形是正方形,,
,,
、、、四点共圆,
,
在和中
,
,
,,
,
,
即是等腰直角三角形,
由勾股定理得:,
即.
∴= 4
故答案为:32
本题主要考查对勾股定理,正方形的性质,直角三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,利用旋转模型构造三角形全等和等腰直角三角形是解此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)甲的成绩比乙稳定;(1)见解析
【解析】
(1)根据中位数、平均数的概念计算;
(2)从平均数和方差相结合看,方差越小的越成绩越好;
(1)根据题意,从平均数,中位数两方面分析即可.
【详解】
解:(1) :(1)通过折线图可知:
甲的环数按从小到大排列是5、6、6、7、7、7、7、8、8、9,
则数据的中位数是(7+7)÷2=7;
的平均数=(2+4+6+7+8+7+8+9+9+10)=7;
乙命中9环以上的次数(包括9环)为1.
填表如下:
(2)因为平均数相同,
所以甲的成绩比乙稳定.
(1)理由1:因为平均数相同,命中9环以上的次数甲比乙少,所以乙的成绩比甲好些;
理由2:因为平均数相同,甲的中位数小于乙的中位数,所以乙的成绩比甲好些;
理由1:甲的成绩在平均数上下波动;而乙处于上升势头,从第4次以后就没有比甲少的情况发生,乙较有潜力.
本题考查了折线统计图.读懂统计图,从统计图中得到必要的信息是解决问题的关键.也考查了中位数、平均数和方差的概念.在实际生活中常常用它们分析问题.
15、化简得: 求值得:.
【解析】
先解不等式组,求得不等式组的整数解,后利用分式混合运算化简分式,把使分式有意义的字母的值代入求值即可.
【详解】
解:因为,解得:<,
因为为整数,所以 .
原式
因为,所以取,
所以:上式.
本题考查分式的化简求值,不等式组的解法,特别要注意求值时学生容易忽视分式有意义的条件.
16、(1)见解析;(2)见解析;(3)
【解析】
(1)如图1中,作DF⊥BC延长线于点F,垂足为F.证明△ABH≌△DCF(HL),即可解决问题.
(2)如图2中,设∠BAH=α,则∠B=90°−α;设∠ADE=β则∠CED=2∠ADE+2∠BAH=2α+2β.证明∠ECD=∠EDC即可.
(3)延长CM交DA延长线于点N,连接EN,首先证明△ECD为等边三角形,延长PD到K使DK=EQ,证明△EQC≌△DKC(SAS),推出∠DCK=∠ECQ,QC=KC,推出∠PCK=∠DCK+∠PCD=30°=∠PCQ,连接PQ.证明△PQC≌△PKC(SAS)推出PQ=PK,可得PK=PD+DK=PD+EQ=5+2=7,作PT⊥QD于T,∠PDT=60°,∠TPD=30°,作CR⊥ED于R,勾股定理解直角三角形求出RC,RQ即可解决问题.
【详解】
(1)证明:如图1中,作DF⊥BC延长线于点F,垂足为F.
∵AH⊥BC,
∴∠AHB=∠DFC=90°,
∵AD∥BC,
∴∠ADF+∠AFD=180°,
∴∠ADF=180°−90°=90°,
∴四边形AHFD为矩形,
∴AH=DF,
∵AH=DF,AB=CD,
∴△ABH≌△DCF(HL)
∴∠B=∠DCF,
∴AB∥CD.
(2)如图2中,设∠BAH=α,则∠B=90°−α;设∠ADE=β,
则∠CED=2∠ADE+2∠BAH=2α+2β.
∵AB∥CD,AB=CD,
∴四边形ABCD为平行四边形,
∴∠B=∠ADC=90°−α,
∴∠EDC=∠ADC−∠ADE=90°−α−β,
在△EDC中,∠ECD=180°−∠CED−∠EDC=180°−(90°−α−β)−(2α+2β)=90°−α−β
∴∠EDC=∠ECD,
∴EC=ED.
(3)延长CM交DA延长线于点N,连接EN,
∵AD∥BC,
∴∠ANM=∠BCM,
∵∠AMN=∠BMC、AM=MB,
∴△AMN≌△BMC(AAS)
∴AN=BC,
∵四边形ABCD为平行四边形,
∴AD=BC,
∴AD=AN,
∵AD∥BC,
∴∠DAH=∠HAD=90°,
∴EN=ED,
∵ED=EC,
∴EC=DE=EN,
∴∠ADE=∠ANE,∠ECM=∠ENM,
∵∠ADE+∠ECM=30°,
∴∠DEC=∠ADE+∠DNE+∠NCE,
=∠ADE+∠ANE+∠ENC+∠DCN
=2(∠ADE+∠ECM)=2×30°=60°.
∵EC=ED,
∴△ECD为等边三角形,
∴EC=CD,∠DCE=60°,延长PD到K使DK=EQ,
∵PD∥EC,
∴∠PDE=∠DEC=60°,∠KDC=∠ECD=60°,
∴∠KDC=∠DEC,EC=CD,DK=EQ,
∴△EQC≌△DKC(SAS),
∴∠DCK=∠ECQ,QC=KC,
∵∠ECQ+∠PCD=∠ECD−∠PCQ=60°−30°=30°,
∴∠PCK=∠DCK+∠PCD=30°=∠PCQ,
连接PQ.
∵PC=PC,∠PCK=∠PCQ, QC=KC,
∴△PQC≌△PKC(SAS)
∴PQ=PK,
∵PK=PD+DK=PD+EQ=5+2=7,
作PT⊥QD于T,∠PDT=60°,∠TPD=30°,
∴TD=PD=,PT==,
在Rt△PQT中,QT=,
∴QD=,
∴ED=8+2=10,
∴EC=ED=10,作CR⊥ED于R,∠DEC=60°∠ECR=30°,
∴ER=EC=5,RC=,RQ=5−2=3
在Rt△QRC中,CQ=.
本题属于四边形综合题考查了平行四边形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考压轴题.
17、36πcm2
【解析】
用大圆的面积减去4个小圆的面积即可得到剩余阴影部分的面积,分解因式然后把R和r的值代入计算出对应的代数式的值.
【详解】
阴影部分面积=πR2-4πr2
=π(R2-4r2)
=π(R-2r)(R+2r)
=π×﹙6.8+2×1.6﹚×﹙6.8-2×1.6﹚
=36π(cm2).
本题考查因式分解的运用,看清题意利用圆的面积计算公式列出代数式,进一步利用提取公因式法和平方差公式因式分解解决问题.
18、7
【解析】
根据二次根式的加减法法则、平方差公式求出x+y、xy,利用完全平方公式把所求的代数式变形,代入计算即可.
【详解】
∵x=+1 , y=-1 ,
∴x+y=(+1)+(-1)=2,
xy=(+1)(-1)=1,
∴x2+xy+y2 = x2+2xy+-xy=-xy=-1=7.
故答案为:7.
本题考查二次根式的化简求值,灵活运用平方差公式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
分析:根据三角形中位线定理求出第二个三角形的周长、第三个三角形的周长,总结规律,得到答案.
详解:根据三角形中位线定理得到第二个三角形三边长是△ABC的三边长的一半,即第二个三角形的周长为,则第三个三角形的周长为,∴第2018个三角形的周长为;
故答案为:.
点睛:本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
20、;
【解析】
根据在直角三角形中,角所对的边是斜边的一半,即可的BC的长.
【详解】
根据题意中,若
所以可得BC=
故答案为1
本题主要考查在直角三角形中,角所对的边是斜边的一半,这是一个重要的直角三角形的性质,应当熟练掌握.
21、3
【解析】
分析:根据同类二次根式的被开方式相同列方程求解即可.
详解:由题意得,
3a+4=25-4a,
解之得,
a=3.
故答案为:3.
点睛:本题考查了同类二次根式的应用,根据同类二次根式的定义列出关于a的方程是解答本题的关键.
22、-
【解析】
∵,
∴可设:,
∴.
故答案为.
23、-1
【解析】
众数是一组数据中出现次数最多的数据.
【详解】
观察﹣1,﹣4,6,0,﹣1,1,﹣1
其中﹣1出现的次数最多,
故答案为: .
本题考查了众数的概念,解题的关键在于对众数的理解.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB;
(2)利用角平分线性质证明Rt△ADC≌Rt△ADE,AC=AE,再将线段AB进行转化.
【详解】
证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DE=DC,
在Rt△CDF和Rt△EDB中,,
∴Rt△CDF≌Rt△EDB(HL).
∴CF=EB;
(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DC=DE.
在Rt△ADC与Rt△ADE中,
∴Rt△ADC≌Rt△ADE(HL),
∴AC=AE,
∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
本题主要考查角平分线的性质、全等三角形的判定和性质,角平分线上的点到角两边的距离相等,斜边和一直角边对应相等的两个直角三角形全等,掌握这两个知识点是解题的关键.
25、 (1) ;(2) x>3.
【解析】
(1)根据直线y=kx+2与直线相交于点A(3,1),与x轴交于点B可以求得k的值和点B的坐标;
(2)根据函数图象可以直接写出不等式kx+2<的解集.
【详解】
(1),解得:
(2),解得:x>3
本题考查一次函数与一元一次不等式,解题的关键是明确题意,利用数形结合的思想解答问题.
26、x2=-3,x2=-2
【解析】
利用因式分解法解方程.
【详解】
解:(x+3)(x+2)=2,
x+3=2或x+2=2,
所以x2=-3,x2=-2.
本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
题号
一
二
三
四
五
总分
得分
平均数
方差
中位数
命中9环以上的次数(包括9环)
甲
7
1.2
1
乙
5.4
7.5
平均数
方差
中位数
命中9环以上的次数(包括9环)
甲
7
1.2
7
1
乙
7
5.4
7.5
1
相关试卷
这是一份2023-2024学年山东省烟台市招远市金岭镇邵家初级中学数学九年级第一学期期末预测试题含答案,共7页。
这是一份2023-2024学年山东省烟台市招远市金岭镇邵家初级中学数学九年级第一学期期末考试模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列方程是一元二次方程的是等内容,欢迎下载使用。
这是一份山东省烟台市招远市金岭镇邵家初级中学2023-2024学年数学八上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了若是完全平方式,则实数的值为,下列各式中,是分式的有等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)