年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    山东省潍坊市寿光世纪学校2024-2025学年九上数学开学监测模拟试题【含答案】

    山东省潍坊市寿光世纪学校2024-2025学年九上数学开学监测模拟试题【含答案】第1页
    山东省潍坊市寿光世纪学校2024-2025学年九上数学开学监测模拟试题【含答案】第2页
    山东省潍坊市寿光世纪学校2024-2025学年九上数学开学监测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省潍坊市寿光世纪学校2024-2025学年九上数学开学监测模拟试题【含答案】

    展开

    这是一份山东省潍坊市寿光世纪学校2024-2025学年九上数学开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,已知四边形是平行四边形,、分别为和边上的一点,增加以下条件不能得出四边形为平行四边形的是( )
    A.B.C.D.
    2、(4分)在平行四边形ABCD中,数据如图,则∠D的度数为( )
    A.20°B.80°C.100°D.120°
    3、(4分)如图,若一次函数的图象与x轴的交于点,与y轴交于点下列结论:①关于x的方程的解为;②随x的增大而减小;③关于x的方程的解为;④关于x的不等式的解为其中所有正确的为
    A.①②③B.①③C.①②④D.②④
    4、(4分)将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,则CD的长为( )
    A.4B.12﹣4C.12﹣6D.6
    5、(4分)已知关于x的分式方程=1的解是负数,则m的取值范围是( )
    A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2
    6、(4分)如图,在矩形中,,,点同时从点出发,分别沿及方向匀速运动,速度均为每秒1个单位长度,当一个点到达终点时另一个点也停止运动,连接.设运动时间为秒,的长为,则下列图象能大致反映与的函数关系的是( )
    A.B.
    C.D.
    7、(4分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=( )
    A.16crnB.14cmC.12cmD.8cm
    8、(4分)若,,则( )
    A.B.C.D.5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6 cm,动点P,Q分别从A,C同时出发,P以1 cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动(Q运动到B时两点同时停止运动),则________后四边形ABQP为平行四边形.
    10、(4分)分解因式:x2y﹣y3=_____.
    11、(4分)二次函数的图象的顶点是__________.
    12、(4分)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为_____.
    13、(4分)如图,把R1,R2,R3三个电阻串联起来,线路AB上的电流为I,电压为U,则U=IR1+IR2+IR3,当R1=18.3,R2=17.6,R3=19.1,U=220时,I的值为___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).
    (1)求m,n的值;
    (2)请结合图象直接写出不等式mx+n>x+n﹣2的解集.
    (3)若直线l1与y轴交于点A,直线l2与x轴交于点B,求四边形PAOB的面积.
    15、(8分)如图,,、分别是、的中点,图①是沿将折叠,点落在上,图②是绕点将顺时针旋转.
    (1)在图①中,判断和形状.(填空)_______________________________________
    (2)在图②中,判断四边形的形状,并说明理由.
    16、(8分)已知一次函数的图像经过点M(-1,3)、N(1,5)。直线MN与坐标轴相交于点A、B两点.
    (1)求一次函数的解析式.
    (2)如图,点C与点B关于x轴对称,点D在线段OA上,连结BD,把线段BD顺时针方向旋转90°得到线段DE,作直线CE交x轴于点F,求的值.
    (3)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化,若不变,请求出其值;若变化,请说明理由.
    17、(10分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
    (Ⅰ)图①中的值为 ;
    (Ⅱ)求统计的这组数据的平均数、众数和中位数;
    (Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只?
    18、(10分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图像如下图
    所示:
    (1)根据图像,直接写出y1、y2关于x的函数关系式;
    (2)若两车之间的距离为S千米,请写出S关于x的函数关系式;
    (3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若正比例函数 y k2x 的图象经过点 A1,  3 , 则k的值是_____.
    20、(4分)等腰三角形一腰上的高与另一腰的夹角是40°,则该等腰三角形顶角为_____°.
    21、(4分)如图,在正方形中,是对角线上的点,,,分别为垂足,连结. 设分别是的中点,,则的长为________。
    22、(4分)在平行四边形ABCD中,若∠A=70°,则∠C的度数为_________.
    23、(4分)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解下列方程
    (1)3x2-9x=0
    (2)4x2-3x-1=0
    25、(10分)□ABCD中,AC=6,BD=10,动点P从B出发以每秒1个单位的速度沿射线BD匀速运动,动点Q从D出发以相同速度沿射线DB匀速运动,设运动时间为t秒.

    (1)当t =2时,证明以A、P、C、Q为顶点的四边形是平行四边形.
    (2)当以A、P、C、Q为顶点的四边形为矩形时,直接写出t的值.
    (3)设PQ=y,直接写出y与t的函数关系式.
    26、(12分)某商场销售一批名牌衬衫,平均每天销售20件,每件盈利40元,为了扩大销售,增加盈利减少库存,商场决定采取适当的降价措施,经调查发现,如果每件降价1元,则每天可多售2件.
    (1)商场若想每天盈利1200元,每件衬衫应降价多少元?
    (2)问在这次活动中,平均每天能否获得1300元的利润,若能,求出每件衬衫应降多少元;若不能,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    逐项根据平行四边形的判定进行证明即可解题.
    【详解】
    解: ∵四边形是平行四边形,
    ∴AB∥CD,AD∥BC,∠A=∠C,∠ABC=∠ADC, AB=CD,AD=BC,
    A.若,易证ED=BF,∵ED∥BF,∴四边形为平行四边形,
    B.若,由于条件不足,无法证明四边形为平行四边形,
    C.若,∴,易证△ABE≌△CDF,∴AE=CF,接下来的证明步骤同选项A,
    D.若 ,易证△ABE≌△CDF,∴AE=CF,接下来的证明步骤同选项A,
    故选B
    本题考查了平行四边形的判定与性质,可以针对各种平行四边形的判定方法,给出条件,本题可通过构造条件证△AEB≌△CFD来解题.
    2、B
    【解析】
    依据平行四边形的性质可得5x+4x=180°,解得x=20°,则∠D=∠B=80°.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC.
    ∴5x+4x=180°,解得x=20°.
    ∴∠D=∠B=4×20°=80°.
    故选B.
    本题主要考查了平行四边形的性质:邻角互补.同时考查了方程思想.
    3、A
    【解析】
    根据一次函数的性质进行分析即可. 一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-,0); 当k>0时,直线必通过一、三象限,y随x的增大而增大;当k0时,关于x的不等式的解为
    所以,正确结论是:①②③.
    故选A.
    本题考核知识点:一次函数的性质. 解题关键点:结合函数的图象分析问题.
    4、B
    【解析】
    过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=60°,进而可得出答案.
    【详解】
    解:过点B作BM⊥FD于点M,
    在△ACB中,∠ACB=90°,∠A=45°,AC=12,
    ∴BC=AC=12.
    ∵AB∥CF,
    ∴BM=BC×sin45°=
    CM=BM=12,
    在△EFD中,∠F=90°,∠E=30°,
    ∴∠EDF=60°,
    ∴MD=BM÷tan60°=,
    ∴CD=CM﹣MD=12﹣.
    故选B.
    本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答.
    5、D
    【解析】
    解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m的取值范围.
    【详解】
    =1,
    解得:x=m﹣3,
    ∵关于x的分式方程=1的解是负数,
    ∴m﹣3<0,
    解得:m<3,
    当x=m﹣3=﹣1时,方程无解,
    则m≠2,
    故m的取值范围是:m<3且m≠2,
    故选D.
    本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.
    6、A
    【解析】
    分三种情况讨论即可求解.
    【详解】
    解:当点A在AD上,点M在AB上,则d=t,(0≤t≤4);
    当点A在CD上,点M在AB上,则d=4,(4<t≤6);
    当点A在CD上,点M在BC上,则d=(10-t)=-t+10(6<t≤10);
    故选:A.
    本题考查了动点问题的函数图象,根据点P的位置的不同,分三段讨论求解是解题的关键.
    7、D
    【解析】
    ∵平行四边形ABCD的周长为40cm,,
    ∴AB=CD,AD=BC,AB+BC+CD+AD=40cm,
    ∴2(AB+BC)=40,
    ∵BC=AB,
    ∴BC=8cm,
    故选D.
    8、C
    【解析】
    依据,2y=3z即可得到x=y,z=y,代式化简求值即可.
    【详解】
    解:∵,,
    ∴x=y,z=y,
    ∴= -5.
    故选:C.
    本题主要考分式的求值,用含y的代数式表示x和z是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2s
    【解析】
    设运动时间为t秒,则AP=t,QC=2t,根据四边形ABQP是平行四边形,得AP=BQ,则得方程t=6-2t即可求解.
    【详解】
    如图,设t秒后,四边形APQB为平行四边形,
    则AP=t,QC=2t,BQ=6-2t,
    ∵AD∥BC,
    ∴AP∥BQ,
    当AP=BQ时,四边形ABQP是平行四边形,
    ∴t=6-2t,
    ∴t=2,
    当t=2时,AP=BQ=2<BC<AD,符合.
    综上所述,2秒后四边形ABQP是平行四边形.
    故答案为2s.
    此题主要考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是关键.
    10、y(x+y)(x﹣y).
    【解析】
    试题分析:先提取公因式y,再利用平方差公式进行二次分解.
    解:x2y﹣y3
    =y(x2﹣y2)
    =y(x+y)(x﹣y).
    故答案为y(x+y)(x﹣y).
    11、
    【解析】
    根据二次函数的解析式,直接即可写出二次函数的的顶点坐标.
    【详解】
    根据二次函数的解析式可得二次函数的顶点为:(5,8).
    故答案为(5,8)
    本题主要考查二次函数的顶点坐标的计算,关键在于利用配方法构造完全平方式,注意括号内是减号.
    12、
    【解析】
    【分析】设出点P坐标,分别表示点AB坐标,由题意△ABC面积与△ABO的面积相等,因此只要求出△ABO的面积即可得答案..
    【详解】设点P坐标为(a,0)
    则点A坐标为(a,),B点坐标为(a,﹣)
    ∴S△ABC=S△ABO =S△APO+S△OPB==,
    故答案为.
    【点睛】本题考查了反比例函数中比例系数k的几何意义,熟练掌握相关知识是解题的关键.
    13、1
    【解析】
    直接把已知数据代入进而求出答案.
    【详解】
    解:由题意可得:U=IR1+IR2+IR3=I(R1+R2+R3),
    当R1=18.3,R2=17.6,R3=19.1,U=220时,
    I(18.3+17.6+19.1)=220
    解得:I=1
    故答案为:1.
    此题主要考查了代数式求值,正确代入相关数据是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)m=﹣1,n=3;(2)x<1;(3)四边形PAOB的面积为:3.1.
    【解析】
    (1)直接把已知点代入函数关系式进而得出m,n的值;
    (2)直接利用函数图形得出不等式mx+n>x+n﹣2的解集;
    (3)分别得出AO,BO的长,进而得出四边形PAOB的面积.
    【详解】
    (1)把P(1,2)代入y=x+n﹣2得:
    1+n﹣2=2,
    解得:n=3;
    把P(1,2)代入y=mx+3得:
    m+3=2,
    解得m=﹣1;
    (2)不等式mx+n>x+n﹣2的解集为:x<1;
    (3)当x=0时,y=x+1=1,
    故OA=1,
    当y=0时,y=﹣x+3,
    解得:x=3,
    则OB=3,
    四边形PAOB的面积为:(1+2)×1+×2×(3﹣1)=3.1.
    此题主要考查了一次函数与一元一次不等式以及四边形的面积,正确利用函数图象分析是解题关键.
    15、(1)和均为等腰三角形;(2)四边形为平行四边形,证明详见解析.
    【解析】
    根据平行线的性质和折叠的性质解答即可;
    (2)由三角形中位线的性质可证,,由旋转的性质可知,从而,然后根据平行四边形的判定方法可证四边形是平行四边形.
    【详解】
    解:(1)和均为等腰三角形.
    ∵DE∥BC,
    ∴∠A′DE=∠BA′D, ∠B=∠ADE,
    ∵∠ADE=∠A′DE,
    ∴∠B=∠BA′D,
    ∴BD=A′D,
    ∴为等腰三角形;
    同理可证CE=A′E,即为等腰三角形.
    (2)四边形为平行四边形.
    理由:、分别是、的中点,
    ,.
    由旋转的性质可知,

    四边形是平行四边形.
    本题考查了折叠的性质,旋转的性质,三角形的中位线,平行线的性质,等腰三角形的判定,以及平行四边形的判定等知识,熟练掌握折叠的性质及旋转的性质是解答本题的关键.
    16、(4)y=x+4.(4);(4)不变,.
    【解析】
    试题分析:(4)用待定系数法,将M,N两点坐标代入解析式求出k,b即得一次函数解析式;(4)∵点C与点B关于x轴对称,B(0,4),∴C(0,-4),再由旋转性质可得DB=DE,∠BDE=90º,过点E作EP⊥x轴于P,易证△BDO≌△DEP,∴OD=PE,DP=BO=4,设D(,0),则E(,),设直线CE解析式是:y=kx+b,把C,E两点坐标代入得:,∴,∴CE解析式是y=x-4,∴F(4,0),OC=OF=4,∴PE=PF,∴EF=,∵A(-4,0),∴DF=4+a,DA=4-a,∴===;(4)此题连接BM,因为AO=BO,MO=PO,且∠BOM=∠AOP,得出△BOM≌△AOP(SAS),∵∠PAO=445º,∴∠MBP=∠PAO=445º,∴∠MBP=90°,在Rt△MBP中,MQ=PQ,∴BQ是此直角三角形斜边中线,等于斜边一半,BQ=MP,MP又是正方形对角线,∴MP=OP,∴BQ:OP=MP:OP=×OP:OP=,∴的值不变,是.
    试题解析:(4)用待定系数法,将M,N两点坐标代入解析式得:,解得b=4,k=4,∴一次函数的解析式是y=x+4;(4)∵点C与点B关于x轴对称,B(0,4),∴C(0,-4),再由旋转性质可得DB=DE,∠BDE=90º,过点E作EP⊥x轴,易证△BDO≌△DEP,设D(,0),则E(,)设直线CE解析式是:y=kx+b,,把C,E两点坐标代入得:,∴∴CE解析式:y=x-4,y=0时,,x=4,∴F(4,0),OC=OF=4,∴PE=PF,∴EF=,∵A(-4,0),∴DF=4+a,DA=4-a,
    ∴===.∴的值是.
    (4)连结BM,由正方形性质可得OM=OP,∠MOP=90º,由A,B点坐标可得AO=BO,又∵∠BOM=∠AOP(同角的余角相等),可证△BOM≌△AOP(SAS),∴∠MBO=∠PAO=480º-45º=445°,∴∠MBP=445º-45º=90°,在Rt△MBP中,MQ=PQ,BQ是此直角三角形斜边中线,等于斜边一半,∴BQ=MP;在Rt△MOP中,,MP=OP;∴BQ:OP=MP:OP=×OP:OP=,当点P在直线AB上运动时,的值不变,是,∴
    考点:4.一次函数性质;4.三角形全等;4.正方形性质.
    17、(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.
    【解析】
    分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;
    (Ⅱ)根据众数、中位数、加权平均数的定义计算即可;
    (Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.
    解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;
    (Ⅱ)观察条形统计图,
    ∵,
    ∴这组数据的平均数是1.52.
    ∵在这组数据中,1.8出现了16次,出现的次数最多,
    ∴这组数据的众数为1.8.
    ∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,
    ∴这组数据的中位数为1.5.
    (Ⅲ)∵在所抽取的样本中,质量为的数量占.
    ∴由样本数据,估计这2500只鸡中,质量为的数量约占.
    有.
    ∴这2500只鸡中,质量为的约有200只.
    点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
    18、(1)(0≤x≤10);(0≤x≤6)(2)(3)A加油站到甲地距离为150km或300km
    【解析】
    (1)直接运用待定系数法就可以求出y1、y2关于x的函数图关系式;
    (2)分别根据当0≤x<时,当≤x<6时,当6≤x≤10时,求出即可;
    (3)分A加油站在甲地与B加油站之间,B加油站在甲地与A加油站之间两种情况列出方程求解即可.
    【详解】
    (1)设y1=k1x,由图可知,函数图象经过点(10,600),
    ∴10k1=600,
    解得:k1=60,
    ∴y1=60x(0≤x≤10),
    设y2=k2x+b,由图可知,函数图象经过点(0,600),(6,0),则

    解得:
    ∴y2=-100x+600(0≤x≤6);
    (2)由题意,得
    60x=-100x+600
    x=,
    当0≤x<时,S=y2-y1=-160x+600;
    当≤x<6时,S=y1-y2=160x-600;
    当6≤x≤10时,S=60x;
    即;
    (3)由题意,得
    ①当A加油站在甲地与B加油站之间时,(-100x+600)-60x=200,
    解得x=,
    此时,A加油站距离甲地:60×=150km,
    ②当B加油站在甲地与A加油站之间时,60x-(-100x+600)=200,
    解得x=5,此时,A加油站距离甲地:60×5=300km,
    综上所述,A加油站到甲地距离为150km或300km.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-1
    【解析】
    把A1,  3点代入正比例函数y k2x中即可求出k值.
    【详解】
    ∵正比例函数 y k2x 的图象经过点 A1,  3,
    ∴,解得:k=-1.
    故答案为:-1.
    本题考查了正比例函数上点的特征,正确理解正比例函数上点的特征是解题的关键.
    20、50°或130°
    【解析】
    首先根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为50°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为130°.
    【详解】
    解:①当为锐角三角形时可以画出图①,
    高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;
    ②当为钝角三角形时可画图为图②,
    此时垂足落到三角形外面,因为三角形内角和为180°,
    由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°;
    故填50°或130°.
    本题主要考查了直角三角形的性质、等腰三角形的性质.此题难度适中,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.
    21、2.1
    【解析】
    连接AG,CG,根据矩形的判定定理得到四边形CFGE是矩形,求得CG=EF=1,根据全等三角形的性质得到AG=CG=1,由三角形中位线的性质即可得到结论.
    【详解】
    连接AG,CG,
    ∵在正方形ABCD中,∠BCD=90°,
    ∵GE⊥CD,GF⊥BC,
    ∴四边形CFGE是矩形,
    ∴CG=EF=1,
    ∵AB=BC,∠ABD=∠CBD=41°,
    ∵BG=BG,
    ∴△ABG≌△CBG(SAS),
    ∴AG=CG=1,
    ∵M,N分别是AB,BG的中点,
    ∴MN=AG=2.1,
    故答案为:2.1.
    本题考查正方形的性质,全等三角形的判定和性质,三角形的中位线定理,正确的作出辅助线是解题的关键.
    22、70°
    【解析】
    在平行四边形ABCD中,∠C=∠A,则求出∠A即可.
    【详解】
    根据题意在平行四边形ABCD中,根据对角相等的性质得出∠C=∠A,
    ∵∠A=70°,
    ∴∠C=70°.
    故答案为:70°.
    此题考查平行四边形的性质,解题关键在于利用平行四边形的性质解答.
    23、
    【解析】
    试题分析:∵正方形ODBC中,OC=1,∴根据正方形的性质,BC=OC=1,∠BCO=90°。
    ∴在Rt△BOC中,根据勾股定理得,OB=。
    ∴OA=OB=。
    ∵点A在数轴上原点的左边,∴点A表示的数是。
    二、解答题(本大题共3个小题,共30分)
    24、(1)x1=0,x2=3;(2)x1=1,x2=-.
    【解析】
    (1)直接利用提取公因式法分解因式进而解方程得出答案;
    (2)直接利用十字相乘法分解因式解方程得出答案.
    【详解】
    (1)3x2-9x=0,
    3x(x-3)=0,
    解得:x1=0,x2=3;
    (2)4x2-3x-1=0,
    (4x+1)(x-1)=0,
    解得:x1=1,x2=-.
    本题考查了利用因式分解法解一元二次方程,正确掌握因式分解的方法是解题的关键.
    25、 (1)见解析;(2) t =2或t =8;(3) y=-2t+10(0≤t≤5时),y=2y-10(t>5时).
    【解析】
    分析:(1)只需要证明四边形APCQ的对角线互相平分即可证明其为平行四边形.
    (2)根据矩形的性质可知四边形APCQ的对角线相等,然后分两种情况即可解答.
    (3)根据(2)中的图形,分两种情况进行讨论即可.
    详解:(1)证明:∵四边形ABCD是平行四边形,
    ∴OA=OC=3,OB=OD=5,
    当t=2时,BP=QD=2,
    ∴OP=OQ=3,
    ∴四边形APCQ是平行四边形;
    (2)t =2或t =8;
    理由如下:
    图一:
    图二:
    ∵四边形APCQ是矩形,
    ∴PQ=AC=6,
    则BQ=PD=2,
    第一个图中,BP=6+2=8,则此时t=8;
    第二个图中,BP=2,则此时t=2.
    即以A、P、C、Q为顶点的四边形为矩形时,t的值为2或8;
    (3)根据(2)中的两个图形可得出:
    y=-2t+10(时),
    y=2y-10(时).
    点睛:本题主要考查了矩形的性质和平行四边形的判定,结合题意画出图形是解答本题的关键.
    26、(1)若商场平均每天要盈利1200元,每件衬衫应降价20元(2)不能.
    【解析】
    (1)设每件衬衫应降价x元,则每件盈利(40﹣x)元,每天可以售出(20+2x),所以此时商场平均每天要盈利(40﹣x)(20+2x)元,根据商场平均每天要盈利=1200元,为等量关系列出方程求解即可.
    (2)假设能达到,根据商场平均每天要盈利=1300元,为等量关系列出方程,看该方程是否有解,有解则说明能达到,否则不能.
    【详解】
    解:(1)设每件衬衫应降价x元,则每件盈利(40﹣x)元,每天可以售出(20+2x),
    由题意,得(40﹣x)(20+2x)=1200,
    即:(x﹣10)(x﹣20)=0,
    解得x1=10,x2=20,
    为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,
    所以,若商场平均每天要盈利1200元,每件衬衫应降价20元;
    (2)假设能达到,由题意,得(40﹣x)(20+2x)=1300,
    整理,得x2﹣30x+250=0,
    △=302﹣4×1×250=-100

    相关试卷

    山东省寿光市现代中学2024-2025学年数学九上开学学业质量监测模拟试题【含答案】:

    这是一份山东省寿光市现代中学2024-2025学年数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省潍坊市寿光市数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2025届山东省潍坊市寿光市数学九上开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江嵊州蒋镇学校数学九上开学监测模拟试题【含答案】:

    这是一份2024-2025学年浙江嵊州蒋镇学校数学九上开学监测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map