宁夏省固原市泾源县2024年九上数学开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)完成以下任务,适合用抽样调查的是( )
A.调查你班同学的年龄情况
B.为订购校服,了解学生衣服的尺寸
C.对北斗导航卫星上的零部件进行检查
D.考察一批炮弹的杀伤半径.
2、(4分)分式有意义的条件是( )
A.B.C.D.
3、(4分)下列变形中,正确的是( )
A.B.
C.D.
4、(4分)武汉某中学体育特长生的年龄,经统计有12、13、14、15四种年龄,统计结果如图.根据图中信息可以判断该批队员的年龄的众数和中位数为( )
A.8和6B.15和14C.8和14D.15和13.5
5、(4分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )
A.极差是47B.众数是42
C.中位数是58D.每月阅读数量超过40的有4个月
6、(4分)菱形具有平行四边形不一定具有的特征是( )
A.对角线互相垂直B.对角相等C.对角线互相平分D.对边相等
7、(4分)如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P.若BC=10,则PQ的长为( )
A.B.C.3D.4
8、(4分)如图,在中,平分,交于点,平分,交于点,,,则长为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将一次函数的图象向上平移个单位得到图象的函数关系式为________________.
10、(4分)如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是_____(只需添加一个即可)
11、(4分)如图,在平面直角坐标系中,菱形的顶点在轴上,边在轴上,若点的坐标为,则点的坐标是____.
12、(4分)如图,等腰直角三角形ABC的直角边AB的长为,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点D,则图中阴影△ADC′的面积等于______.
13、(4分)如图,在正方形ABCD的右边作等腰三角形ADE,AD=AE,,连BE,则__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积.
15、(8分)如图,矩形中,,将矩形绕点旋转得到矩形,使点的对应点落在上,交于点,在上取点,使.
(1)求证:;
(2)求的度数;
(3)若,求的长.
16、(8分)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.
(1)求A,B两点的坐标;
(2)过B点作直线BP与x轴相交于P,且使OP=2OA, 求直线BP的解析式.
17、(10分)(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论;
(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,猜测MN与BM的数量关系,无需证明.
18、(10分)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.
(1)当原点正方形边长为4时,
①在点P1(0,0),P2(-1,1),P3(3,2)中,原点正方形的友好点是__________;
②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;
(2)乙次函数y=-x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知关于x的分式方程有一个正数解,则k的取值范围为________.
20、(4分)若正多边形的一个内角等于150°,则这个正多边形的边数是______.
21、(4分)已知,,,,,……(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,____________.
22、(4分)如图,函数y=kx+b(k≠0)的图象经过点(1,2),则不等式kx+b>2的解集为______.
23、(4分)如图,将绕点按逆时针方向旋转得到,使点落在上,若,则的大小是______°.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)发现.①;②;③;……写出④ ;⑤ ;
(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;
(3)证明这个猜想.
25、(10分)某市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2元收费.如果超过20吨,未超过的部分仍按每吨2元收费,超过部分按每吨2.5元收费.设某户每月用水量为x吨,应收水费为y元.
(1)分别写出当每月用水量未超过20吨和超过20吨时,y与x之间的函数关系式;
(2)若某用户5月份和6月份共用水45吨,且5月份的用水量不足20吨,两个月共交水费95元,求该用户5月份和6月份分别用水多少吨?
26、(12分)如图,已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,
(1)关于x,y的方程组 的解是 ;
(2)a= ;
(3)求出函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:A、人数不多,容易调查,宜采用全面调查;
B、为订购校服,了解学生衣服的尺寸是要求精确度高的调查,适合全面调查;
C、对北斗导航卫星上的零部件进行检查,因为调查的对象比较重要,应采用全面调查;
D、考察一批炮弹的杀伤半径适合抽样调查;
故选D.
本题主要考查了全面调查和抽样调查,解题时根据调查的对象的范围的大小作出判断,当范围较小时常常采用全面调查.
2、C
【解析】
根据分式有意义的定义即可得出答案.
【详解】
∵分式有意义
∴x-2≠0,即x≠2
故答案选择C.
本题考查的是分式有意义,比较简单,分式有意义即分母不等于0.
3、A
【解析】
分式的基本性质是分式的分子、分母同时乘以或除以同一个非1的数或式子,分式的值不变.而如果分式的分子、分母同时加上或减去同一个非1的数或式子,分式的值改变.
【详解】
A、,正确;
B、,错误;
C、,错误;
D、,错误;
故选A.
本题主要考查了分式的性质.注意约分是约去分子、分母的公因式,并且分子与分母相同时约分结果应是1,而不是1.
4、B
【解析】
根据众数和中位数的定义解答即可.
【详解】
解:15岁的队员最多,是8人,所以众数是15岁,20人中按照年龄从小到大排列,第10、11两人的年龄都是14岁,所以中位数是14岁.
故选B.
本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
5、C
【解析】
根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.
【详解】
A、极差为:83-28=55,故本选项错误;
B、∵58出现的次数最多,是2次,
∴众数为:58,故本选项错误;
C、中位数为:(58+58)÷2=58,故本选项正确;
D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;
故选C.
6、A
【解析】
根据平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分;菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角进行解答即可.
【详解】
菱形具有但平行四边形不一定具有的是对角线互相垂直,
故选A.
本题主要考查了菱形和平行四边形的性质,关键是熟练掌握二者的性质定理.
7、C
【解析】
首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.
8、A
【解析】
先证明AB=AF,DC=DE,再根据EF=AF+DE﹣AD,求出AD,即可得出答案.
【详解】
∵四边形是平行四边形
∴,,∥
∵平分,平分
∴,
∴,
∴
∴
∴
故选A
本题考查了平行四边形的性质,考点涉及平行线性质以及等角对等边等知识点,熟练掌握平行四边形的性质是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
根据直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m求解.
【详解】
解:把一次函数的图象向上平移3个单位后,得到的图象对应的函数关系式为.
故答案为:.
本题考查了一次函数图象与几何变换:直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m,直线y=kx+b向下平移m(m>0)个单位所得直线解析式为y=kx+b-m.
10、∠ABC=90°或AC=BD.
【解析】
试题分析:此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.
解:条件为∠ABC=90°,
理由是:∵平行四边形ABCD的对角线互相垂直,
∴四边形ABCD是菱形,
∵∠ABC=90°,
∴四边形ABCD是正方形,
故答案为∠ABC=90°.
点睛:本题主要考查正方形的判定.熟练运用正方形判定定理是解题的关键.
11、C(0,-5)
【解析】
在Rt△ODC中,利用勾股定理求出OC即可解决问题
【详解】
解:∵A(12,13),
∴OD=12,AD=13,
∵四边形ABCD是菱形,
∴CD=AD=13,
在Rt△ODC中,,
∴C(0,-5).
本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
12、
【解析】
由旋转的性质可得AB=AB'=,∠BAB'=15°,可得∠B'AD=∠BAC-∠B'AB=30°,由直角三角形的性质可得B'D=1,由三角形面积公式可求解.
【详解】
解:∵AB=BC,∠ABC=90°,
∴∠BAC=45°,
∵△ABC绕点A逆时针旋转15°后得到△AB′C′,
∴AB=AB'=,∠BAB'=15°,
∴∠B'AD=∠BAC-∠B'AB=30°,且∠B'=90°,
∵tan∠B'AD=,
∴AB'=B'D,
∴B'D=1,
∴阴影△ADC'的面积=,
故答案为:.
本题考查了旋转的性质,等腰直角三角形的性质,及锐角三角函数的知识,熟练运用旋转的性质是本题的关键.
13、45°
【解析】
先证明AB=AE,求得∠AEB,由AD=AE,∠DAE=50°,求得∠AED,进而由角的和差关系求得结果.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵AD=AE,∠DAE=50°,
∴AB=AE,∠ADE=∠AED=65°,∠BAE=140°,
∴∠ABE=∠AEB=20°,
∴∠BED=65°−20°=45°,
故答案为:45°.
本题主要考查了正方形的性质,等腰三角形的性质,三角形内角和定理,关键是求得∠AEB和∠AED的度数.
三、解答题(本大题共5个小题,共48分)
14、24
【解析】
试题分析:阴影部分的面积等于以AC、BC为直径的半圆的面积加上△ABC的面积减去以AB为直径的半圆的面积.
试题解析:根据Rt△ABC的勾股定理可得:AB=10,则S==24
考点:勾股定理
15、(1)见解析;(2)15°;(3)2+2.
【解析】
(1)在直角三角形ABC中,由AC=2AB,得到∠ACB=30°,再由折叠的性质得到一对角相等,利用等角对等边即可得证;
(2)由(1)得到△ABB′为等边三角形,利用矩形的性质及等边三角形的内角为60°,即可求出所求角度数;
(3)连接AF,过A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B为等边三角形,分别利用三角函数定义求出MF与AM,根据AM=BM,即BM+MF=BF即可求出.
【详解】
(1)证明:∵在Rt△ABC中,AC=2AB,
∴∠ACB=∠AC′B′=30°,∠BAC=60°,
由旋转可得:AB′=AB,∠B′AC′=∠BAC=60°,
∴∠EAC′=∠AC′B′=30°,
∴AE=C′E;
(2)解:由(1)得到△ABB′为等边三角形,
∴∠AB′B=60°,即∠BB'F=∠AB'B+∠AB'F=150°,
∵BB'=B'F,
∴∠FBB′=∠B'FB=15°;
(3)解:连接AF,过A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B为等边三角形,
∴∠AFB′=45°,∠BB′F=150°,
∵BB′=B′F,
∴∠B′FB=∠B′BF=15°,
∴∠AFM=30°,∠ABF=45°,
在Rt△AMF中,AM=BM=AB•cs∠ABM=2=2,
在Rt△AMF中,MF=AM=2,
则BF=2+2.
此题参考四边形综合题,旋转的性质,矩形的性质,锐角三角函数定义,等边三角形、直角三角形的性质,熟练掌握旋转的性质是解题的关键.
16、(1)(-,0);(0,1);(2)y=x+1或y=-x+1.
【解析】
试题分析:(1)根据坐标轴上点的坐标特征确定A点和B点坐标;
(2)由OA=,OP=2OA得到OP=1,分类讨论:当点P在x轴正半轴上时,则P点坐标为(1,0);当点P在x轴负半轴上时,则P点坐标为(-1,0),然后根据待定系数法求两种情况下的直线解析式.
试题解析:(1)把x=0代入y=2x+1,得y═1,
则B点坐标为(0,1);
把y=0代入y=2x+1,得0=2x+1,
解得x=-,
则A点坐标为(-,0);
(2)∵OA=,
∴OP=2OA=1,
当点P在x轴正半轴上时,则P点坐标为(1,0),
设直线BP的解析式为:y=kx+b,
把P(1,0),B(0,1)代入得
解得:
∴直线BP的解析式为:y=-x+1;
当点P在x轴负半轴上时,则P点坐标为(-1,0),
设直线BP的解析式为y=kx+b,
把P(-1,0),B(0,1)代入得
解得:k=1,b=1
所以直线BP的解析式为:y=x+1;
综上所述,直线BP的解析式为y=x+1或y=-x+1.
考点:1.一次函数图象上点的坐标特征;2.待定系数法求一次函数解析式.
17、(1)30º,见解析.(2)
【解析】
(1)猜想:∠MBN=30°.如图1中,连接AN.想办法证明△ABN是等边三角形即可解决问题;
(2)MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.只要证明△MOP≌△BOP,即可解决问题.
【详解】
(1)猜想:∠MBN=30°.
证明:如图1中,连接AN,∵直线EF是AB的垂直平分线,
∴NA=NB,由折叠可知,BN=AB,
∴AB=BN=AN,
∴△ABN是等边三角形,
∴∠ABN=60°,
∴NBM=∠ABM=∠ABN=30°.
(2)结论:MN=BM.
折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,
折痕为MP,连接OP.
理由:由折叠可知△MOP≌△MNP,
∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,
∠MOP=∠MNP=90°,
∴∠BOP=∠MOP=90°,
∵OP=OP,
∴△MOP≌△BOP,
∴MO=BO=BM,
∴MN=BM.
本题考查翻折变换、矩形的性质、剪纸问题等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造全等三角形解决问题.
18、(1)①P2,P3 ,②1≤x≤或≤x≤-1;(2)2-≤a≤1.
【解析】
(1)由已知结合图象,找到点P所在的区域;
(2)分别求出点A与B的坐标,由线段AB的位置,通过做圆确定正方形的位置.
【详解】
解:(1)①∵原点正方形边长为4,
当P1(0,0)时,正方形上与P1的最小距离是2,故不存在Q使P1Q≤1;
当P2(-1,1)时,存在Q(-2,1),使P2Q≤1;
当P3(3,2)时,存在Q(2,2),使P3Q≤1;
故答案为P₂、P₃;
②如图所示:阴影部分就是原点正方形友好点P的范围,
由计算可得,点P横坐标的取值范围是:
1≤x≤2+或-2-≤x≤-1;
(2)一次函数y=-x+2的图象分别与x轴,y轴交于点A,B,
∴A(0,2),B(2,0),
∵线段AB上存在原点正方形的友好点,
如图所示:
原点正方形边长a的取值范围2-≤a≤1.
本题考查一次函数的性质,新定义;能够将新定义的内容转化为线段,圆,正方形之间的关系,并能准确画出图形是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、k<6且k≠1
【解析】
分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.
详解:,
方程两边都乘以(x-1),得
x=2(x-1)+k,
解得x=6-k≠1,
关于x的方程程有一个正数解,
∴x=6-k>0,
k<6,且k≠1,
∴k的取值范围是k<6且k≠1.
故答案为k<6且k≠1.
点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.
20、1.
【解析】
首先根据求出外角度数,再利用外角和定理求出边数.
【详解】
正多边形的一个内角等于,
它的外角是:,
它的边数是:.
故答案为:1.
此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.
21、-
【解析】
根据Sn数的变化找出Sn的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.
【详解】
解:S1=,S2=-S1-1=--1=-,S3==-,S4=-S3-1= ,=-(a+1),S6=-S5-1=(a+1)-1=a,S7= ,…,
∴Sn的值每6个一循环.
∵2018=336×6+2,
∴S2018=S2=-.
故答案为:-.
此题考查规律型中数字的变化类,根据数值的变化找出Sn的值,每6个一循环是解题的关键.
22、x>1
【解析】
观察函数图象得到即可.
【详解】
解:由图象可得:当x>1时,kx+b>2,
所以不等式kx+b>2的解集为x>1,
故答案为:x>1.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
23、48°
【解析】
根据旋转得出AC=DC,求出∠CDA,根据三角形内角和定理求出∠ACD,即可求出答案.
【详解】
∵将△ABC绕点C按逆时针方向旋转,得到△DCE,点A的对应点D落在AB边上,
∴AC=DC,
∵∠CAB=66°,
∴∠CDA=66°,
∴∠ACD=180°-∠A-∠CDA=48°,
∴∠BCE=∠ACD=48°,
故答案为:48°.
本题考查了三角形内角和定理,旋转的性质的应用,能求出∠ACD的度数是解此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1),;(2);(3)证明见解析.
【解析】
(1)根据题目中的例子直接写出结果;
(2)根据(1)中的特例,可以写出相应的猜想;
(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题.
【详解】
解:(1)由例子可得,
④为:==,⑤=,
(2)如果n为正整数,用含n的式子表示这个运算规律:= ,
(3)证明:∵n是正整数,
∴==.
即= .
故答案为(1)==,=;(2)= ;(3)证明见解析.
本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.
25、(1)y=2x(0≤x≤20),y=2.5x﹣10(x>20);(2)5月份用水1吨,6月份用水量为30吨.
【解析】
(1)分别根据:未超过20吨时,水费y=2×相应吨数;超过20吨时,水费y=2×20+超过20吨的吨数×2.5;列出函数解析式;
(2)设该户居民5月份用水x吨,则6月份用水量为(45﹣m)吨,然后依据两个月共交水费95元列方程求解即可.
【详解】
解:(1)当0≤x≤20时,y=2x;
当x>20时,y=2×20+2.5(x﹣20)=2.5x﹣10;
(2)设该户居民5月份用水x吨,则6月份用水量为(45﹣m)吨,.
根据题意,得:2m+2.5(45﹣m)﹣10=95,
解得:m=1.
答:该户居民5月份用水1吨,6月份用水量为30吨.
故答案为(1)y=2x(0≤x≤20),y=2.5x﹣10(x>20);(2)5月份用水1吨,6月份用水量为30吨.
本题考查了一次函数的应用、一元一次方程的应用;得到用水量超过20吨的水费的关系式是解决本题的关键.
26、(1);(2)-1;(3)2
【解析】
(1)先求出点P为(1,2),再把P点代入解析式即可解答.
(2)把P(1,2)代入y=ax+3,即可解答.
(3)根据y=x+1与x轴的交点为(﹣1,0),y=﹣x+3与x轴的交点为(3,0),即可得到这两个交点之间的距离,再根据三角形的面积公式,即可解答.
【详解】
(1)把x=1代入y=x+1,得出y=2,
函数y=x+1和y=ax+3的图象交于点P(1,2),
即x=1,y=2同时满足两个一次函数的解析式.
所以关于x,y的方程组 的解是 .
故答案为;
(2)把P(1,2)代入y=ax+3,
得2=a+3,解得a=﹣1.
故答案为﹣1;
(3)∵函数y=x+1与x轴的交点为(﹣1,0),
y=﹣x+3与x轴的交点为(3,0),
∴这两个交点之间的距离为3﹣(﹣1)=2,
∵P(1,2),
∴函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积为:×2×2=2.
此题考查一次函数与二元一次方程,解题关键在于把已知点代入解析式求解.
题号
一
二
三
四
五
总分
得分
批阅人
2025届宁夏省固原市九上数学开学综合测试试题【含答案】: 这是一份2025届宁夏省固原市九上数学开学综合测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年宁夏省固原市泾源县九年级数学第一学期开学检测试题【含答案】: 这是一份2024-2025学年宁夏省固原市泾源县九年级数学第一学期开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
宁夏省固原市泾源县2023-2024学年数学九年级第一学期期末质量跟踪监视试题含答案: 这是一份宁夏省固原市泾源县2023-2024学年数学九年级第一学期期末质量跟踪监视试题含答案,共8页。试卷主要包含了已知2x=5y等内容,欢迎下载使用。