内蒙古准格尔旗第四中学2024-2025学年数学九年级第一学期开学学业水平测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是( )
A.53,53B.53,56C.56,53D.56,56
2、(4分)如图,正方形的边长为10,,,连接,则线段的长为( )
A.B.C.D.
3、(4分) “的3倍与3的差不大于8”,列出不等式是( )
A.B.
C.D.
4、(4分)如图,直线与分别交x轴于点,,则不等式的解集为( )
A.B.C.D.或
5、(4分)式子在实数范围内有意义,则x的取值范围( )
A.x≤2B.x<2C.x>2D.x≥2
6、(4分)矩形的面积为,一边长为,则另一边长为( )
A.B.C.D.
7、(4分)要使二次根式有意义,则x的取值范围是( )
A.x<3B.x≤3C.x>3D.x≥3
8、(4分)均匀地向一个容器注水,最后将容器注满在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数y=x+2与一次函数y=mx+n的图象交于点P(a,-2),则关于x的方程x+2=mx+n的解是__________.
10、(4分)已知,,则__________.
11、(4分)如图,正方形ABCD的边长为,点E、F分别为边AD、CD上一点,将正方形分别沿BE、BF折叠,点A的对应点M恰好落在BF上,点C的对应点N给好落在BE上,则图中阴影部分的面积为__________;
12、(4分)一组数据中,9出现1次,14出现4次,15出现5次,则这组数据的平均数是_____.
13、(4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)先化简代数式.求:当时代数式值.
(2)解方程:.
15、(8分)已知:如图所示,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.
(1)试说明:AE=AF;
(2)若∠B=60°,点E,F分别为BC和CD的中点,试说明:△AEF为等边三角形.
16、(8分)如图,在△ABC中,AC=BC,∠C=90°,D是BC上的一点,且BD=CD.
(1)尺规作图:过点D作AB的垂线,交AB于点F;
(2)连接AD,求证:AD是△ABC的角平分线.
17、(10分)8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).
根据图表信息,回答问题:
(1)直接写出表中,,,的值;
(2)用方差推断, 班的成绩波动较大;用优秀率和合格率推断, 班的阅读水平更好些;
(3)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些。你认为谁的推断比较科学合理,更客观些,为什么?
18、(10分)已知=,求代数式的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在中,,,点在上,.若点是边上异于点的另一个点,且,则的值为______.
20、(4分)如图,在▱ABCD中,再添加一个条件_____(写出一个即可),▱ABCD是矩形(图形中不再添加辅助线)
21、(4分)若,则= .
22、(4分)斜边长17cm,一条直角边长15cm的直角三角形的面积 .
23、(4分)如图 ,矩形 ABCD 中,对角线 AC,BD 相交于点 O,若再补充一个条件就能使矩形 ABCD 成为正方形,则这个条件是 (只需填一个条件即可).
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,矩形花坛面积是24平方米,两条邻边,的和是10米(),求边的长.
25、(10分)先化简,再求值:
,其中
26、(12分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).
(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;
(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;
(3)直接写出点B2,C2的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据众数和中位数的定义求解可得.
【详解】
解:将数据重新排列为51,53,53,56,56,56,58,
所以这组数据的中位数为56,众数为56,
故选:D.
本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
2、B
【解析】
延长DH交AG于点E,利用SSS证出△AGB≌△CHD,然后利用ASA证出△ADE≌△DCH,根据全等三角形的性质求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.
【详解】
解:延长DH交AG于点E
∵四边形ABCD为正方形
∴AD=DC=BA=10,∠ADC=∠BAD=90°
在△AGB和△CHD中
∴△AGB≌△CHD
∴∠BAG=∠DCH
∵∠BAG+∠DAE=90°
∴∠DCH+∠DAE=90°
∴CH2+DH2=82+62=100= DC2
∴△CHD为直角三角形,∠CHD=90°
∴∠DCH+∠CDH=90°
∴∠DAE=∠CDH,
∵∠CDH+∠ADE=90°
∴∠ADE=∠DCH
在△ADE和△DCH中
∴△ADE≌△DCH
∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°
∴EG=AG-AE=2,HE= DE-DH=2,∠GEH=180°-∠AED=90°
在Rt△GEH中,GH=
故选B.
此题考查是正方形的性质、全等三角形的判定及性质和勾股定理,掌握正方形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键.
3、A
【解析】
直接利用已知得出3x-3小于等于1即可.
【详解】
根据题意可得:3x-3≤1.
故选A.
此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.
4、D
【解析】
把,转化为不等式组①或②,然后看两个函数的图象即可得到结论.
【详解】
∵
∴①或②
∵直线与分别交x轴于点,
观察图象可知①的解集为:,②的解集为:
∴不等式的解集为或.
故选D.
本题主要考查一次函数和一元一次不等式,学会根据图形判断函数值的正负是关键.
5、C
【解析】
分析:
根据使“分式和二次根式有意义的条件”进行分析解答即可.
详解:
∵式子在实数范围内有意义,
∴ ,解得:.
故选C.
点睛:熟记:“使分式有意义的条件是:分母的值不能为0;使二次根式有意义的条件是:被开方数为非负数”是解答本题的关键.
6、C
【解析】
根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.
【详解】
∵矩形的面积为18,一边长为,
∴另一边长为,
故选:C.
本题考查了矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解此题的关键.
7、B
【解析】
分析:根据二次根式有意义的条件回答即可.
详解:由有意义,可得3-x≥0,解得:x≤3.故选B.
点睛:本题考查了二次根式有意义的条件,解题的关键是知道二次根式有意义,被开方数为非负数.
8、D
【解析】
根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断即可.
【详解】
注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC上升最快,
由此可知这个容器下面容积较大,中间容积最大,上面容积最小,
故选D.
本题考查了函数的图象,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x=-4
【解析】
先根据一次函数y=x+2的解析式求出点P的坐标,然后利用两个一次函数图象的交点与方程x+2=mx+n的解的关系即可得出答案.
【详解】
∵一次函数y=x+2与一次函数y=mx+n的图象交于点P(a,-2),
∴ ,
解得 ,
∴ .
∵两个一次函数的图象的交点的横坐标为x+2=mx+n的解,
∴关于x的方程x+2=mx+n的解是 ,
故答案为:.
本题主要考查两个一次函数的交点与一元一次方程的解的关系,掌握两个一次函数的交点与一元一次方程的解的关系是解题的关键.
10、1
【解析】
把x与y代入计算即可求出xy的值
【详解】
解:当,时,
∴ ;
故答案为:1.
此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.
11、
【解析】
分析:设NE=x,由对称的性质和勾股定理,用x分别表示出ON,OE,OM,在直角△OEN中用勾股定理列方程求x,则可求出△OBE的面积.
详解:连接BO.
∠ABE=∠EBF=∠FBC=30°,AE=1=EM,BE=2AE=2.
∠BNF=90°,∠NEO=60°,∠EON=30°,
设EN=x,则EO=2x,ON=x=OM,
∴OE+OM=2x+x=(2+)x=1.∴x==2-.
∴ON=x=(2-)=2-3.
∴S=2S△BOE=2×(×BE×ON)=2×[×2×(2-3)]=4-6.
故答案为.
点睛:翻折的本质是轴对称,所以注意对称点,找到相等的线段和角,结合勾股定理列方程求出相关的线段后求解.
12、1
【解析】
根据加权平均数的定义计算可得.
【详解】
解:这组数据的平均数为=1,
故答案为:1.
本题考查了加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.
13、1.
【解析】
利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可.
【详解】
设经过(1,4),(2,7)两点的直线解析式为y=kx+b,
∴,
解得,
∴y=1x+1,
将点(a,10)代入解析式,则a=1;
故答案为:1.
此题考查待定系数法求一次函数的解析式,正确理解题意,利用一次函数解析式确定点的横坐标a的值.
三、解答题(本大题共5个小题,共48分)
14、(1)2;(2).
【解析】
(1)把括号内通分化简,再把除法转化为乘法约分,然后把代入计算即可;
(2)两边都乘以x-2,化为整式方程求解,求出x的值后检验.
【详解】
(1)原式=
=
=
=
=,
当 时,
原式=;
(2),
两边都乘以x-2,得
3=2(x-2)-x,
解之得
x=7,
检验:当x=7时,x-2≠0,所以x=7是原方程的解.
本题考查了分式的化简求值,以及分式方程的解法,熟练掌握分式的运算法则及分式方程的求解步骤是解答本题的关键.
15、(1)见详解;(2)见详解
【解析】
(1)由菱形的性质可得AB=AD,∠B=∠D,又知BE=DF,所以利用SAS判定△ABE≌△ADF从而得到AE=AF;
(2)连接AC,由已知可知△ABC为等边三角形,已知E是BC的中点,则∠BAE=∠DAF=30°,即∠EAF=60°.因为AE=AF,所以△AEF为等边三角形.
【详解】
(1)由菱形ABCD可知:
AB=AD,∠B=∠D,
∵BE=DF,
∴△ABE≌△ADF(SAS),
∴AE=AF;
(2)连接AC,
∵菱形ABCD,∠B=60°,
∴△ABC为等边三角形,∠BAD=120°,
∵E是BC的中点,
∴AE⊥BC(等腰三角形三线合一的性质),
∴∠BAE=30°,同理∠DAF=30°,
∴∠EAF=60°,由(1)可知AE=AF,
∴△AEF为等边三角形.
此题主要考查学生对菱形的性质,全等三角形的判定及等边三角形的判定的理解及运用,灵活运用是关键.
16、 (1)见解析;(2)见解析.
【解析】
(1)以D点为圆心,线段BD的长度为半径交AB于点E,分别以E,B为圆心,大于 的长度为半径作圆,交于一点,连接D和该交点的直线,交AB于F,则直线DF为所求.
(2) 设CD=a,则BD=a,求出AB,再由面积相等求出DF的长度,得到DF=CD,从而可证明结论.
【详解】
解:(1)如右图所示;
(2)证明:设CD=a,则BD=a,
∵在△ABC中,AC=BC,∠C=90°,
∴AC=a+=(1+)a,
∴AB=()a,
∵,
解得,DF=a,
∴DC=DF=a,
∵DC⊥AC,DF⊥AB,
∴AD是△ABC的角平分线.
本题第一问主要考查中垂线的画法,第二问主要考查角平分线的证明
17、(1);(2)二;一;(3)乙,理由见解析.
【解析】
(1)求出一班的成绩总和除以人数即可得出一班的平均分;观察图即可得出一班众数;把二班的成绩按照从小到大的顺序排列,即可得到二班的中位数;用二班合格的人数除以二班总人数即可得到二班的合格率;
(2)利用方差、优秀率、合格率的意义下结论即可;
(3)从平均数、众数、中位数对整体数据影响的情况考虑分析即可.
【详解】
解:(1)通过观察图中数据可得:
;
;
二班共有:人,
∵图中数据已经按照从小到大的顺序排列,
∴中位数为20、21的平均数,即:;
二班合格的人数有:人,总人数为40人,
∴,
故答案为:;
(2)一班方差为:2.11,二班方差为4.28,∴二班的成绩波动较大,
一班优秀率为20%,合格率为92.5%,二班的优秀率为10%,合格率为85%,∴一班的阅读水平更好些;
故答案为:二;一;
(3)乙同学的说法较合理,
平均分受极端值的影响,众数、中位数则是反映一组数据的集中趋势和平均水平,因此用众数和中位数进行分析要更加客观,二班的众数和中位数都比一班的要好,因此乙同学推断比较科学合理,更客观.
本题考查了众数、中位数、方差的意义及各个统计量反映数据的特征,准确把握各个统计量的意义是解决此类题目的关键.
18、
【解析】
把x的值代入多项式进行计算即可.
【详解】
当=时,===
本题考查了二次根式的化简求值,掌握完全平方公式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、24或21或
【解析】
情况1:连接EP交AC于点H,依据先证明是菱形,再根据菱形的性质可得到∠ECH=∠PCH=10°,然后依据SAS可证明△ECH≌△PCH,则∠EHC=∠PHC=90°,最后依据EP=2EH=2sin10°•EC求解即可.
情况2:如图2所示:△ECP为等腰直角三角形,则=EC=2.此时,=24
情况2:如图2:过点P′作P′F⊥BC.通过解直角三角形可以解得FC ,EF,再在Rt△P′EF中,利用勾股定理可以求得.
【详解】
解:情况1:如图所示:连接EP交AC于点H.
∵在中,
∴是菱形
∵菱形ABCD中,∠B=10°,
∴∠BCD=120°,∠ECH=∠PCH=10°.
在△ECH和△PCH中
,
∴△ECH≌△PCH.
∴∠EHC=∠PHC=90°,EH=PH.
∴EP=2EH=2sin10°•EC=2××2=1.
∴=21
情况2:如图2所示:△ECP为等腰直角三角形,则=EC=2.
∴=24
情况2:如图2:过点P′作P′F⊥BC.
∵P′C=2,BC=4,∠B=10°,
∴P′C⊥AB.
∴∠BCP′=20°.
∴FC=×2=2,P′F=,EF=2-2.
∴=,
故答案为:24或21或.
本题主要考查的是菱形的性质,全等三角形的判定和性质,以及解直角三角形和勾股定理得结合,是综合性题目,难度较大.
20、AC=BD
【解析】
根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.
【详解】
添加的条件是AC=BD,
理由是:∵AC=BD,四边形ABCD是平行四边形,
∴平行四边形ABCD是矩形,
故答案为:AC=BD
本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形.
21、1.
【解析】
试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.
考点:二次根式有意义的条件.
22、60cm2
【解析】
试题分析:先根据勾股定理求得另一条直角边的长,再根据直角三角形的面积公式即可求得结果.
由题意得,另一条直角边的长
则直角三角形的面积
考点:本题考查的是勾股定理,直角三角形的面积公式
点评:本题属于基础应用题,只需学生熟练掌握勾股定理和直角三角形的面积公式,即可完成.
23、AB=BC(答案不唯一).
【解析】
根据正方形的判定添加条件即可.
【详解】
解:添加的条件可以是AB=BC.理由如下:
∵四边形ABCD是矩形,AB=BC,
∴四边形ABCD是正方形.
故答案为AB=BC(答案不唯一).
本题考查了矩形的性质,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.此题是一道开放型的题目,答案不唯一,也可以添加AC⊥BD.
二、解答题(本大题共3个小题,共30分)
24、4米
【解析】
根据矩形的面积和邻边和可以设的长是米,则的长是,列出方程即可解答
【详解】
解:设的长是米,则的长是,
解得:,.
当时,,
当时,不符合题意,舍去;
答:的长是4米.
此题考查矩形的性质,解题关键在于列出方程
25、-2
【解析】
试题分析:先化简,再将x的值代入计算即可.
试题解析:
原式=
=+1
=
当x=时,原式==-2
26、(1)答案见解析;(2)答案见解析;(3)点B2(4,-2),C2(1,-3).
【解析】
试题分析:(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.
试题解析:解:(1)如图,△A1B1C1即为所求;
(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).
题号
一
二
三
四
五
总分
得分
批阅人
班级
平均分
方差
中位数
众数
合格率
优秀率
一班
2.11
7
92.5%
20%
二班
6.85
4.28
8
10%
吉安市重点中学2024-2025学年数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份吉安市重点中学2024-2025学年数学九年级第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
海南省海口中学2024-2025学年数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份海南省海口中学2024-2025学年数学九年级第一学期开学学业水平测试模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年上海华亭学校九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年上海华亭学校九年级数学第一学期开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。