终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    辽宁省丹东市第18中学2024年九上数学开学质量跟踪监视试题【含答案】

    立即下载
    加入资料篮
    辽宁省丹东市第18中学2024年九上数学开学质量跟踪监视试题【含答案】第1页
    辽宁省丹东市第18中学2024年九上数学开学质量跟踪监视试题【含答案】第2页
    辽宁省丹东市第18中学2024年九上数学开学质量跟踪监视试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽宁省丹东市第18中学2024年九上数学开学质量跟踪监视试题【含答案】

    展开

    这是一份辽宁省丹东市第18中学2024年九上数学开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在平面直角坐标系的第一象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是( )
    A.(3,-4).B.(4,-3).C.(3,4).D.(4,3).
    2、(4分)在中,、分别是、边的中点,若,则的长是( )
    A.9B.5C.6D.4
    3、(4分)一个多边形的内角和与外角和相等,则这个多边形的边数为( )
    A.8B.6C.5D.4
    4、(4分)如图,在矩形ABCD中,AB=6,BC=8,E是BC边上一点,将矩形沿AE折叠,点B落在点B'处,当△B'EC是直角三角形时,BE的长为( )
    A.2B.6C.3或6D.2或3或6
    5、(4分)在平行四边形中,于点,于点,若,,平行四边形的周长为,则( )
    A.B.C.D.
    6、(4分)下列式子从左到右的变形一定正确的是( )
    A.B.C.D.
    7、(4分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )
    A.B.C. D
    8、(4分)下列各式中,与是同类二次根式的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若代数式有意义,则x的取值范围是__________.
    10、(4分)若关于x的方程-2=会产生增根,则k的值为________
    11、(4分)若一次函数的图象,随的增大而减小,则的取值范围是_____.
    12、(4分)如图,已知的平分线与的垂直平分线相交于点,,,垂足分别为,,,,则的长为__________.
    13、(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,未超过20本的不打折,试写出付款金额(单位:元)与购买数量(单位:本)之间的函数关系_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在等腰△ABC中,AC=BC,D在BC上,P是射线AD上一动点.
    (1)如图①,若∠ACB=90°,AC=8,CD=6,当点P在线段AD上,且△PCD是等腰三角形时,求AP长.
    (2)如图②,若∠ACB=90°,∠APC=45°,当点P在AD延长线上时,探究PA,PB,PC的数量关系,并说明理由.
    (3)类比探究:如图③,若∠ACB=120°,∠APC=30°,当点P在AD延长线上时,请直接写出表示PA,PB,PC的数量关系的等式.
    15、(8分)如图,直线分别与轴交于点,与轴交于点,与双曲线交于点.
    (1)求与的值;
    (2)已知是轴上的一点,当时,求点的坐标.
    16、(8分)如图,平行四边形中,对角线和相交于点,且
    (1)求证:;
    (2)若,求的长.
    17、(10分)某学校欲招聘一名新教师,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制)如下表所示:
    (1)根据三项得分的平均分,从高到低确定应聘者的排名顺序;
    (2)学校规定:笔试、面试、才艺得分分别不得低于80分、80分、70分,并按照60%、30%、10%的比例计入个人总分,请你说明谁会被录用?
    18、(10分)(问题情境)
    如图,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
    (探究展示)
    (1)直接写出AM、AD、MC三条线段的数量关系: ;
    (2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
    (拓展延伸)
    (3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图,探究展示(1)、(2)中的结论是否成立,请分别作出判断,不需要证明.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)计算:(-0.75)2015 × = _____________.
    20、(4分)如图,为的中位线,,则________________.
    21、(4分)如图所示,工人师傅做一个矩形铝合金窗框分下面三个步骤进行
    先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.
    (1)摆放成如图②的四边形,则这时窗框的形状是平行四边形,它的依据是 .
    (2)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是矩形,它的依据是 .
    22、(4分)如图,在平面直角坐标系中,一次函数和函数的图象交于A、B两点.利用函数图象直接写出不等式的解集是____________.
    23、(4分)某工厂原计划在规定时间内生产12000个零件,实际每天比原计划多生产100个零件,结果比规定时间节省了.若设原计划每天生产x个零件,则根据题意可列方程为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,矩形纸片ABCD中,AB=8,AD=6,折叠纸片使AD边落在对角线BD上,点A落在点A′处,折痕为DG,求AG的长.
    25、(10分) “赏中华诗词,寻文化基因,品生活之美”某校举办了首届“中国诗词比赛”,全校师生同时默写50首古诗,每正确默写出一首古诗得2分,结果有600名学生进入决赛,从进入决赛的600名学生中随机抽取40名学生进行成绩分析,根据比赛成绩绘制出部分频数分布表和部分频数分布直方图如下列图表
    第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82请结合以上数据信息完成下列各题:
    (1)填空:a= 所抽取的40名学生比赛成绩的中位数是
    (2)请将频数分布直方图补充完整
    (3)若比赛成绩不低于84分的为优秀,估计进入决赛的学生中有多少名学生的比赛成绩为优秀?
    26、(12分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
    (1)求点B的坐标;
    (2)若△ABC的面积为4,求的解析式.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据第一象限内点的坐标特征,可得答案.
    【详解】
    解:由题意,得
    x=4,y=3,
    即M点的坐标是(4,3),
    故选:D.
    本题考查点的坐标,熟记各象限内点的坐标特征是解题关键.
    2、C
    【解析】
    根据三角形的中位线定理得出AB=2DE,把DE的值代入即可.
    【详解】
    解:∵D、E分别是BC、AC边的中点,
    ∴DE是△CAB的中位线,
    ∴AB=2DE=6.
    故选C.
    本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记并灵活应用定理是解题的关键.
    3、D
    【解析】
    利用多边形的内角和与外角和公式列出方程,然后解方程即可.
    【详解】
    设多边形的边数为n,根据题意
    (n-2)•180°=360°,
    解得n=1.
    故选:D.
    本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.
    4、C
    【解析】
    分以下两种情况求解:①当点B′落在矩形内部时,连接AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△B′EC为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.
    ②当点B′落在AD边上时.此时四边形ABEB′为正方形,求出BE的长即可.
    【详解】
    解:当△B′EC为直角三角形时,有两种情况:
    ①当点B′落在矩形内部时,如图1所示.连结AC,
    在Rt△ABC中,AB=1,BC=8,
    ∴AC==10,
    ∵∠B沿AE折叠,使点B落在点B′处,
    ∴∠AB′E=∠B=90°,
    当△B′EC为直角三角形时,得到∠EB′C=90°,
    ∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,
    ∴EB=EB′,AB=AB′=1,
    ∴CB′=10﹣1=4,
    设BE=x,则EB′=x,CE=8﹣x,
    在Rt△B′EC中,
    ∵EB′2+CB′2=CE2,
    ∴x2+42=(8﹣x)2,
    解得x=3,
    ∴BE=3;
    ②当点B′落在AD边上时,如图2所示.
    此时ABEB′为正方形,
    ∴BE=AB=1.
    综上所述,BE的长为3或1.
    故选:C.
    本题考查了折叠变换的性质、直角三角形的性质、矩形的性质,正方形的判定等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键.
    5、D
    【解析】
    已知平行四边形的高AE、AF,设BC=xcm,则CD=(20-x)cm,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.
    【详解】
    解:设BC=xcm,则CD=(20−x)cm,
    根据“等面积法”得,4x=6(20−x),
    解得x=12,
    ∴平行四边形ABCD的面积=4x=4×12=48;
    故选D.
    本题主要考查了平行四边形的性质,掌握平行四边形的性质是解题的关键.
    6、D
    【解析】
    分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.而如果分式的分子、分母同时加上或减去同一个非0的数或式子,分式的值改变.
    【详解】
    A.无法进行运算,故A项错误.
    B.当c=0时无法进行运算,故B项错误.
    C. 无法进行运算,故C项错误.
    D. ,故D项正确.
    故答案为:D
    本题考查分式的性质,熟练掌握分式的性质定理是解题的关键.
    7、D
    【解析】
    先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.
    【详解】
    由题意得,2x+y=10,
    所以,y=-2x+10,
    由三角形的三边关系得,,
    解不等式①得,x>2.5,
    解不等式②的,x<5,
    所以,不等式组的解集是2.5<x<5,
    正确反映y与x之间函数关系的图象是D选项图象.
    故选:D.
    8、B
    【解析】
    先化简二次根式,再根据同类二次根式的定义判定即可.
    【详解】
    解:A、与的被开方数不同,不是同类二次根式,故本选项错误.
    B、=2,与的被开方数相同,是同类二次根式,故本选项正确.
    C、与的被开方数不同,不是同类二次根式,故本选项错误.
    D、=3 ,与的被开方数不同,不是同类二次根式,故本选项错误.
    故选:B.
    本题考查同类二次根式,解题的关键是二次根式的化简.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、且
    【解析】
    结合二次根式和分式有意义的条件,列式求解即可得到答案;
    【详解】
    解:∵代数式有意义,
    ∴,
    解得:且,
    故答案为:且.
    本题主要考查了二次根式和分式有意义的条件;对于二次根式,被开方数不能为负;对于分式,分母不能为0;掌握这两个知识点是解题的关键.
    10、
    【解析】
    根据方程有增根可得x=3,把-2=去分母后,再把x=3代入即可求出k的值.
    【详解】
    ∵关于x的方程-2=会产生增根,
    ∴x-3=0,
    ∴x=3.
    把-2=的两边都乘以x-3得,
    x-2(x-3)=-k,
    把x=3代入,得
    3=-k,
    ∴k=-3.
    故答案为:-3.
    本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.
    11、
    【解析】
    利用函数的增减性可以判定其比例系数的符号,从而确定m的取值范围.
    【详解】
    解:∵一次函数y=(m-1)x+2,y随x的增大而减小,
    ∴m-1<0,
    ∵m<1,
    故答案为:m<1.
    本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0.
    12、
    【解析】
    连接DC、DB,根据中垂线的性质即可得到DB=DC,根据角平分线的性质即可得到DE=DF,从而即可证出△DEB≌DFC,从而得到BE=CF,再证△AED≌△AFD,即可得到AE=AF,最后根据,即可求出BE.
    【详解】
    解:如图所示,连接DC、DB,
    ∵DG垂直平分BC
    ∴DB=DC
    ∵AD平分,,
    ∴DE=DF,∠DEB=∠DFC=90°
    在Rt△DEB和Rt△DFC中,
    ∴Rt△DEB≌Rt△DFC
    ∴BE=CF
    在Rt△AED和Rt△AFD中,
    ∴Rt△AED≌Rt△AFD
    ∴AE=AF
    ∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE
    ∵,
    ∴BE=(AB-AC)=1.5.
    故答案为:1.5.
    此题考查的是垂直平分线的性质、角平分线的性质和全等三角形的判定,掌握垂直平分线上的点到线段两个端点的距离相等、角平分线上的点到角两边的距离相等和用HL证全等三角形是解决此题的关键.
    13、
    【解析】
    本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额与购书数的函数关系式,再进行整理即可得出答案.
    【详解】
    解:根据题意得:

    整理得:;
    则付款金额(单位:元)与购书数量(单位:本)之间的函数关系是;
    故答案为:.
    本题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意的取值范围.
    三、解答题(本大题共5个小题,共48分)
    14、(1)满足条件的AP的值为2.8或4或2;(2)PA﹣PB=PC.理由见解析;(3)PA﹣PB=PC.理由见解析.
    【解析】
    (1)如图①中,作CH⊥AD于H.利用面积法求出CH,利用勾股定理求出DH,再求出PD,接下来分三种情形解决问题即可;
    (2)结论:PA﹣PB=PC.如图②中,作EC⊥PC交AP于E.只要证明△ACE≌△BCP即可解决问题;
    (3)结论:PA﹣PB=PC.如图③中,在AP上取一点E,使得∠ECP=∠ACB=120°.只要证明△ACE≌△BCP即可解决问题;
    【详解】
    (1)如图①中,作CH⊥AD于H.
    在Rt△ACD中,AD==10,
    ∵×AC×DC=×AD×CH,
    ∴CH=,
    ∴DH==,
    ①当CP=CD,∵CH⊥PD,
    ∴PH=DH=,
    ∴PD=,
    ∴PA=AD﹣PD=10﹣=.
    ②当CD=DP时,DP=1.AP=10﹣1=4,
    ③当CP=PD时,易证AP=PD=2,
    综上所述,满足条件的AP的值为2.8或4或2.
    (2)结论:PA﹣PB=PC.
    理由:如图②中,作EC⊥PC交AP于E.
    ∵∠PCE=90°,∠CPE=42°,
    ∴∠CEP=∠CPE=42°,
    ∴CE=CP,PE=PC,
    ∵∠ACB=∠ECP=90°,
    ∴∠ACE=∠BCP,
    ∵CA=CB,
    ∴△ACE≌△BCP,
    ∴AE=PB,
    ∴PA﹣PB=PA﹣EA=PE=PC,
    ∴PA﹣PB=PC.
    (3)结论:PA﹣PB=PC.
    理由:如图③中,在AP上取一点E,使得∠ECP=∠ACB=120°.
    ∵∠CEP=180°﹣120°﹣30°=30°,
    ∴∠CEP=∠CPE,
    ∴CE=CP.作CH⊥PE于H,则PE=PC,
    ∵∠ACB=∠ECP,
    ∴∠ACE=∠BCP,
    ∵CA=CB,
    ∴△ACE≌△BCP,
    ∴AE=PB,
    ∴PA﹣PB=PA﹣EA=PE=PC.
    本题考查三角形综合题、等腰三角形的性质、全等三角形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
    15、(1)12;(2)或.
    【解析】
    (1)把点(4,m)代入直线求得m,然后代入与反比例函数,求出k;
    (2)设点P的纵坐标为y,一次函数与x轴相交于点A,与y轴相交于点C,则A(-2,0),C(0,1),然后根据S△ABP=S△APC+S△BPC列出关于y的方程,解方程求得即可.
    【详解】
    解:(1)点在一次函数上,

    又点在反比例函数上,

    (2)设点的纵坐标为,一次函数与轴相交于点,与轴相交于点,
    ,,
    又点在轴上,,
    ,即,


    或.
    本题考查的是反比例函数的图象与一次函数图象的交点问题,三角形的面积等知识,求出交点坐标,利用数形结合思想是解题的重点.
    16、(1)详见解析;(2)
    【解析】
    (1)先证明AC=BD,再证明平行四边形ABCD是矩形即可得到答案;
    (2)证明△AOD为等边三角形,再运用勾股定理求解即可.
    【详解】
    证明:在平行四边形中,



    四边形是矩形
    解:四边形是矩形.


    是等边三角形,

    在中,
    本题考查了矩形的判定和性质,勾股定理,平行四边形的性质,熟练掌握矩形的判定和性质定理是解题的关键.
    17、(1)排名顺序为:甲、丙、乙;(2)丙会被录用.
    【解析】
    (1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;
    (2)先算出甲、乙、丙的总分,根据公司的规定先排除甲,再根据丙的总分最高,即可得出丙被录用
    【详解】
    (1),,
    ∴ ∴排名顺序为:甲、丙、乙.
    (2)由题意可知,只有甲的笔试成绩只有79分,不符合规定
    乙的成绩为:
    丙的成绩为:
    ∵甲先被淘汰,按照学校规定,丙的成绩高于乙的成绩,乙又被淘汰
    ∴丙会被录用.
    此题考查加权平均数,掌握运算法则是解题关键
    18、(1)证明见解析;(2)成立.证明见解析;(3) (1)成立;(2)不成立
    【解析】
    (1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.
    (2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.
    (3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.
    【详解】
    解:(1)证明:延长AE、BC交于点N,如图1(1),
    ∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.
    ∴∠ENC=∠MAE.∴MA=MN.
    ∴△ADE≌△NCE(AAS)
    ∴AD=NC.∴MA=MN=NC+MC=AD+MC.
    (2)AM=DE+BM成立.
    证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.
    ∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.
    ∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.
    ∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.
    ∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.
    ∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.
    (3)①结论AM=AD+MC仍然成立.
    证明:延长AE、BC交于点P,如图2(1),
    ∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.
    ∴∠EPC=∠MAE.∴MA=MP.
    ∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.
    ②结论AM=DE+BM不成立.
    证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.
    ∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,
    ∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.
    ∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM
    =∠BAM+∠QAB ∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.
    ∴△ABQ≌△ADE(AAS)∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.
    ∴AM=DE+BM不成立.
    本题是四边形综合题,主要考查了正方形和矩形的性质,全等三角形的性质和判定,等腰三角形的判定,平行线的性质,角平分线的定义等,考查了基本的模型构造:平行和中点构造全等三角形.有较强的综合性.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据积的乘方的逆用进行计算求解.
    【详解】
    解:(-0.75)2015 ×
    =
    =
    =
    =
    本题考查积的乘方的逆用使得运算简便,掌握积的乘方公式正确计算是本题的解题关键.
    20、50°
    【解析】
    根据三角形中位线定理可得EF∥AB,进而可求出∠EFC的度数.
    【详解】
    ∵EF是中位线,
    ∴DE∥AB,
    ∴∠EFC=∠B=50°,
    故答案为:50°.
    本题考查了三角形中位线定理,解题的关键是熟记三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
    21、【答题空1】两组对边分别相等的四边形是平行四边形
    【答题空2】有一个角是直角的平行四边形是矩形
    【解析】
    (1)∵AB=CD,EF=GH,
    ∴四边形为平行四边形.(两组对边相等的四边形为平行四边形)
    (2)由(2)知四边形为平行四边形,
    ∵∠C为直角,
    ∴四边形为矩形.(一个角为直角的平行四边形为矩形)
    根据平行四边形的判定,两组对边分别相等的四边形为平行四边形,即可得出②的结论,当把一个角变为直角时,根据一个角为直角的平行四边形为矩形即可得出③的结论.
    22、
    【解析】
    不等式的解集实际上是反比例函数值小于一次函数值的自变量x的取值范围,根据图象可以直接得出答案.
    【详解】
    解:不等式的解集实际上是反比例函数值小于一次函数值的自变量x的取值范围,根据图象得:1<x<1.
    故答案为:1<x<1.
    本题考查一次函数、反比例函数的图象和性质,理清不等式的解集与两个函数的交点坐标之间的关系是解决问题的关键.
    23、-
    【解析】
    设原计划每天生产x个零件,则根据时间差关系可列出方程.
    【详解】
    设原计划每天生产x个零件,根据结果比规定时间节省了.
    可得 -
    故答案为: -
    理解工作问题,从时间关系列出方程.
    二、解答题(本大题共3个小题,共30分)
    24、AG=1.
    【解析】
    由折叠的性质得∠BA′G=∠DA′G=∠A=90°,A′D=6,由勾股定理得BD=10,得出A′B=4,设AG=A′G=x,则GB=8-x,由勾股定理得出方程,解方程即可得出结果.
    【详解】
    ∵矩形ABCD折叠后AD边落在BD上,
    ∴∠BA′G=∠DA′G=∠A=90°,
    ∵AB=8,AD=6,
    ∴A′D=6,BD===10,
    ∴A′B=4,
    设AG=A′G=x,则GB=8-x,
    由勾股定理得:x2+42=(8-x)2,解得:x=1,
    ∴AG=1.
    本题主要考查折叠的性质、矩形的性质、勾股定理,熟练掌握折叠的性质、勾股定理是解题的关键.
    25、(1)6,78;(2)见解析;(3)240名
    【解析】
    (1)根据题意和频数分布表中的数据可以求得a的值和这组数据的中位数;
    (2)根据(1)中a的值和分布表中成绩为76≤x<84的频数可以将频数分布直方图补充完整;
    (3)根据频数分布表中的数据可以计算出进入决赛的学生中有多少名学生的比赛成绩为优秀.
    【详解】
    解:(1)a=40﹣4﹣8﹣12﹣10=6,
    ∵第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82,
    ∴中位数是78,
    故答案为:6,78;
    (2)由(1)知a=6,
    补全的频数分布直方图如右图所示;
    (3)600×=240(名),
    答:进入决赛的学生中有240名学生的比赛成绩为优秀.
    本题考查频数分布直方图、频数分布表、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.
    26、(1)(0,3);(2).
    【解析】
    (1)在Rt△AOB中,由勾股定理得到OB=3,即可得出点B的坐标;
    (2)由=BC•OA,得到BC=4,进而得到C(0,-1).设的解析式为, 把A(2,0),C(0,-1)代入即可得到的解析式.
    【详解】
    (1)在Rt△AOB中,
    ∵,
    ∴,
    ∴OB=3,
    ∴点B的坐标是(0,3) .
    (2)∵=BC•OA,
    ∴BC×2=4,
    ∴BC=4,
    ∴C(0,-1).
    设的解析式为,
    把A(2,0),C(0,-1)代入得:,
    ∴,
    ∴的解析式为是.
    考点:一次函数的性质.
    题号





    总分
    得分
    批阅人
    应试者
    面试成绩
    笔试成绩
    才艺

    83
    79
    90

    85
    80
    75

    80
    90
    73
    组别
    成绩x(分)
    频数(人数)
    第1组
    60≤x<68
    4
    第2组
    68≤x<76
    8
    第3组
    76≤x<84
    12
    第4组
    84≤x<92
    a
    第5组
    92≤x<100
    10

    相关试卷

    辽宁省辽阳市第九中学2024-2025学年数学九上开学质量跟踪监视试题【含答案】:

    这是一份辽宁省辽阳市第九中学2024-2025学年数学九上开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    辽宁省朝阳建平县联考2024年数学九上开学质量跟踪监视试题【含答案】:

    这是一份辽宁省朝阳建平县联考2024年数学九上开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届辽宁省营口中学数学九上开学质量跟踪监视试题【含答案】:

    这是一份2025届辽宁省营口中学数学九上开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map