金华市重点中学2025届数学九上开学考试模拟试题【含答案】
展开
这是一份金华市重点中学2025届数学九上开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列函数中是一次函数的是
A.B.
C.D.
2、(4分)点、均在由边长为1的正方形组成的网格的格点上,建立平面直角坐标系如图所示。若是轴上使得的值最大的点,是轴上使得的值最小的点,则( )
A.4B.6.3C.6.4D.5
3、(4分)如图,在菱形中,,分别是,的中点,若,,则菱形的面积为( )
A.B.C.D.
4、(4分)下列事件中,确定事件是( )
A.向量与向量是平行向量B.方程有实数根;
C.直线与直线相交D.一组对边平行,另一组对边相等的四边形是等腰梯形
5、(4分)如图,双曲线与直线交于点M,N,并且点M坐标为(1,3)点N坐标为(-3,-1),根据图象信息可得关于x的不等式的解为( )
A.B.
C.D.
6、(4分)对于二次函数的图象与性质,下列说法正确的是( )
A.对称轴是直线,最大值是2B.对称轴是直线,最小值是2
C.对称轴是直线,最大值是2D.对称轴是直线,最小值是2
7、(4分)下列说法:① 平方等于64的数是8;② 若a,b互为相反数,ab≠0,则;③ 若,则的值为负数;④ 若ab≠0,则的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( )
A.0个B.1个C.2个D.3个
8、(4分)函数的图象如图所示,则关于的不等式的解集是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,将长方形纸片ABCD进行折叠,∠FEH=70°,则∠BHE=_______.
10、(4分)使有意义的的取值范围是______.
11、(4分)已知三角形两边长分别为2,3,那么第三边的长可以是___________.
12、(4分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:
根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是_____.
13、(4分)已知,是关于的一元二次方程的两个实根,且满足,则的值等于__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某市篮球队到市一中选拔一名队员,教练对王亮和李刚两名同学进行次分投篮测试,一人每次投个球,下图记录的是这两名同学次投篮中所投中的个数.
(1)请你根据图中的数据,填写下表;
(2)你认为谁的成绩比较稳定,为什么?
(3)若你是教练,你打算选谁?简要说明理由.
15、(8分)如图,的对角线相交于点分别为的中点.求证:.
16、(8分)如图,抛物线与直线相交于,两点,且抛物线经过点
(1)求抛物线的解析式.
(2)点是抛物线上的一个动点(不与点点重合),过点作直线轴于点,交直线于点.当时,求点坐标;
(3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.
17、(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4, 1),B(-1,3),C(-1,1)
(1)将△ABC以原点O为旋转中心旋转180°,画出旋转后对应的△;平移△ABC,若A对应的点坐标为(-4,-5),画出△;
(2)若△绕某一点旋转可以得到△,直接写出旋转中心坐标是__________;
(3)在x轴上有一点P是的PA+PB的值最小,直接写出点P的坐标___________;
18、(10分)已知,梯形ABCD中,AB∥CD,BC⊥AB,AB=AD,连接BD(如图a),点P沿梯形的边,从点A→B→C→D→A移动,设点P移动的距离为x,BP=y.
(1)求证:∠A=2∠CBD;
(2)当点P从点A移动到点C时,y与x的函数关系如图(b)中的折线MNQ所示,试求CD的长.
(3)在(2)的情况下,点P从A→B→C→D→A移动的过程中,△BDP是否可能为等腰三角形?若能,请求出所有能使△BDP为等腰三角形的x的取值;若不能,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:________.
20、(4分)如图,点E,F分别在x轴,y轴的正半轴上.点在线段EF上,过A作分别交x轴,y轴于点B,C,点P为线段AE上任意一点(P不与A,E重合),连接CP,过E作,交CP的延长线于点G,交CA的延长线于点D.有以下结论①,②,③,④,其中正确的结论是_____.(写出所有正确结论的番号)
21、(4分)评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试80分,作业95分,课堂参与82分,则他的数学期末成绩为_____.
22、(4分)使式子的值为0,则a的值为_______.
23、(4分)如图,折叠矩形纸片的一边AD,使点D落在BC边上的点F处,BC=10cm, AB=8cm, 则EC的长为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.
25、(10分)积极推行节能减排,倡导绿色出行,“共享单车”、共享助力车”先后上市,为人们出行提供了方便.某人去距离家千米的单位上班,骑“共享助力车”可以比骑“共享单车”少用分钟,已知他骑“共享助力车”的速度是骑“共享单车”的倍,求他骑“共享助力车”上班需多少分钟?
26、(12分)平面直角坐标系xOy中,直线y=x+b与直线y=x交于点A(m,1).与y轴交于点B
(1)求m的值和点B的坐标;
(2)若点C在y轴上,且△ABC的面积是1,请直接写出点C的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据形如k、b是常数的函数是一次函数即可解答.
【详解】
选项A是反比例函数;选项B是二次函数;选项C是二次函数;选项D是一次函数.
故选D.
本题主要考查了一次函数定义,关键是掌握一次函数解析式y=kx+b的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.
2、C
【解析】
首先连接AB并延长,交x轴于点P,此时的值最大,可得出OP=4,作点A关于y轴的对称点A′,连接A′B交y轴于点Q,此时的值最小,首先求出直线A′B的解析式,得出,即可得出OQ,进而得解.
【详解】
连接AB并延长,交x轴于点P,此时的值最大;
易求OP=4;
如图,作点A关于y轴的对称点A′,连接A′B交y轴于点Q,此时的值最小,
直线A′B:,
∴
∴
∴
故答案为C.
此题主要考查轴对称的最值问题,关键是作辅助线,找出等量关系.
3、A
【解析】
根据EF是△ABC的中位线,由三角形中位线定理求出BC的长.连接BD,然后根据菱形的对角线互相垂直的性质用勾股定理求出BD的长,最后用菱形的面积公式求解.
【详解】
解:连接BD
∵E、F分别是AB,AC边上的中点,
∴EF是△ABC的中位线,
∴BC=2EF=4,
是菱形
AC与BD互相垂直平分,
BD经过F点,
则S菱形ABCD=
故选:A.
本题考查了三角形的中位线定理和菱形的性质,理解中位线定理BC、用勾股定理求出BF是关键.
4、B
【解析】
根据“必然事件和不可能事件统称确定事件”逐一判断即可.
【详解】
A. 向量与向量是平行向量,是随机事件,故该选项错误;
B. 方程有实数根,是确定事件,故该选项正确;
C. 直线与直线相交,是随机事件,故该选项错误;
D. 一组对边平行,另一组对边相等的四边形是等腰梯形,是随机事件,故该选项错误;
故选:B.
本题主要考查确定事件,掌握确定事件和随机事件的区别是解题的关键.
5、D
【解析】
求关于x的不等式<kx+b的解,就是看一次函数图象在反比例函数图象上方时点的横坐标的集合.
【详解】
∵点M坐标为(1,3),点N坐标为(-3,-1),
∴关于x不等式<kx+b的解集为:-3<x<0或x>1,
故选D.
此题主要考查了反比例函数与一次函数交点问题,利用图象求不等式的解时,关键是利用两函数图象的交点横坐标.
6、A
【解析】
根据抛物线的图象与性质即可判断.
【详解】
解:由抛物线的解析式:y=-(x-1)2+2,
可知:对称轴x=1,
开口方向向下,所以有最大值y=2,
故选:A.
本题考查二次函数的性质,解题的关键是正确理解抛物线的图象与性质,本题属于基础题型.
7、B
【解析】
根据平方、相反数的定义、绝对值的性质依次判定各项后即可解答.
【详解】
① 平方等于64的数是±8;
② 若a,b互为相反数,ab≠0,则;
③ 若,可得a≥0,则的值为负数或0;
④ 若ab≠0,当a>0,b>0时,=1+1=2;当a>0,b
相关试卷
这是一份江苏省重点中学2024-2025学年数学九上开学考试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份果洛市重点中学2025届九上数学开学考试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份大同市重点中学2025届九上数学开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。