|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省镇江市丹徒区2024-2025学年数学九上开学经典试题【含答案】
    立即下载
    加入资料篮
    江苏省镇江市丹徒区2024-2025学年数学九上开学经典试题【含答案】01
    江苏省镇江市丹徒区2024-2025学年数学九上开学经典试题【含答案】02
    江苏省镇江市丹徒区2024-2025学年数学九上开学经典试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省镇江市丹徒区2024-2025学年数学九上开学经典试题【含答案】

    展开
    这是一份江苏省镇江市丹徒区2024-2025学年数学九上开学经典试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为( )
    A.9B.10C.12D.14
    2、(4分)如图,长宽高分别为3,2,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面亮到现点B,则它爬行的最短路程是( )
    A.B.2C.3D.5
    3、(4分)在下列交通标志中,是中心对称图形的是( )
    A.B.
    C.D.
    4、(4分)若代数式有意义,则x应满足( )
    A.x=0B.x≠1C.x≥﹣5D.x≥﹣5且x≠1
    5、(4分)如图是本地区一种产品30天的销售图像,图1是产品销售量y(件)与时间t(天)的函数关系,图2是一件产品的销售利润z(元)与时间t(天)的函数关系,已知日销售利润=日销售量×每件产品的销售利润,下列结论错误的是( ).
    A.第24天的销售量为200件B.第10天销售一件产品的利润是15元
    C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元
    6、(4分)已知菱形的两条对角线长分别为6和8,则它的周长为( )
    A.10B.14C.20D.28
    7、(4分)方程x2﹣9=0的解是( )
    A.x=3B.x=9C.x=±3D.x=±9
    8、(4分)已知P1(-1,y1),P2(-2,y2)是一次函数y=2x+3图象上的两个点,则y1,y2的大小关系是( )
    A.y1>y2B.y2>y1C.y1=y2D.不能确定
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.
    10、(4分)每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,_____是常量,_____是变量.
    11、(4分)把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.
    12、(4分)若二次根式有意义,则实数x的取值范围是__________.
    13、(4分)如图,在△ABE中,∠E=30°,AE的垂直平分线MN交BE于点C,且AB=AC,则∠B=________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,平行四边形中,对角线和相交于点,且
    (1)求证:;
    (2)若,求的长.
    15、(8分)如图,在△ABC中,∠B=90°,点P从点A开始沿AB边向点B以1㎝/秒的速度移动,同时点Q从点B开始沿BC边向点C以2㎝/秒的速度移动.()
    (1)如果ts秒时,PQ//AC,请计算t的值.
    (2)如果ts秒时,△PBQ的面积等于S㎝2,用含t的代数式表示S.
    (3)PQ能否平分△ABC的周长?如果能,请计算出t值,不能,说明理由.
    16、(8分)已知:如图,在矩形中,、的平分线、分别交、于点,,求证:.
    17、(10分)如图:在正方形ABCD中,点P、Q是CD边上的两点,且DP=CQ,过D作DG⊥AP于H,交AC、BC分别于E,G,AP、EQ的延长线相交于R.
    (1)求证:DP=CG;
    (2)判断△PQR的形状,请说明理由.
    18、(10分)如图1,在正方形和正方形中,边在边上,正方形绕点按逆时针方向旋转
    (1)如图2,当时,求证:;
    (2)在旋转的过程中,设的延长线交直线于点.①如果存在某一时刻使得,请求出此时的长;②若正方形绕点按逆时针方向旋转了,求旋转过程中,点运动的路径长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若因式分解:__________.
    20、(4分)如图,菱形的边长为1,;作于点,以为一边,作第二个菱形,使;作于点,以为一边,作第三个菱形,使;…依此类推,这样作出第个菱形.则_________. _________.
    21、(4分)如图矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,∠ACG=∠AGC,∠GAF=∠F=20°,则AB=__.
    22、(4分)如图,在平面直角坐标系中,点为第一象限内一点,且.连结,并以点为旋转中心把逆时针转90°后得线段.若点、恰好都在同一反比例函数的图象上,则的值等于________.
    23、(4分)如图,边长为4的菱形ABCD中,∠ABC=30°,P为BC上方一点,且,则PB+PC的最小值为___________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)化简:÷(-a-2),并代入一个你喜欢的值求值.
    25、(10分)解一元二次方程:
    (1)6x2﹣x﹣2=0
    (2)(x+3)(x﹣3)=3
    26、(12分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点,将矩形的一个角沿直线 折叠,使得点 落在对角线 上的点 处,折痕与 轴交于点 .
    (1)求直线所对应的函数表达式;
    (2)若点 在线段上,在线段 上是否存在点 ,使以 为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    利用平行四边形的性质即可解决问题.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=3,OD=OB==2,OA=OC=4,
    ∴△OBC的周长=3+2+4=9,
    故选:A.
    题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.
    2、C
    【解析】
    将长方形的盒子按不同方式展开,得到不同的矩形,求出不同矩形的对角线,最短者即为正确答案.
    【详解】
    解:将长方形的盒子按不同方式展开,得到不同的矩形,对角线长分别为:

    ∴从点A出发沿着长方体的表面爬行到达点B的最短路程是3.
    故选C.
    本题主要考查了两点之间线段最短,解答时根据实际情况进行分类讨论,灵活运用勾股定理是解题的关键.
    3、C
    【解析】
    解:A图形不是中心对称图形;
    B不是中心对称图形;
    C是中心对称图形,也是轴对称图形;
    D是轴对称图形;不是中心对称图形
    故选C
    4、D
    【解析】
    根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.
    【详解】
    要使代数式有意义,必须有x+5≥0且x-1≠0,
    即x≥-5且x≠1,
    故选D.
    5、C
    【解析】
    图1是产品日销售量y(单位:件)与时间t单位:天)的函数图象,观察图象可对A做出判断;通过图2求出z与t的函数关系式,求出当t=10时z的值,做出对B的判断,分别求出第12天和第30天的销售利润,对C、D进行判断.
    【详解】
    解:A、根据图①可得第24天的销售量为200件,故正确;
    B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,
    得,z=-t+25(0≤t≤20),
    当20<t≤30时候,由图2知z固定为5,则:
    ,,当t=10时,z=15,因此B也是正确的;
    C、第12天的销售利润为:[100+(200-100)÷24×12](25-12)=2150元,第30天的销售利润为:150×5=750元,不相等,故C错误;
    D、第30天的销售利润为:150×5=750元,正确;
    故选C.
    考查一次函数的图象和性质、分段函数的意义和应用以及待定系数法求函数的关系式等知识,正确的识图,分段求出相应的函数关系式是解决问题的关键.
    6、C
    【解析】
    根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.
    【详解】
    解:如图所示,
    根据题意得AO=×8=4,BO=×6=3,
    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=DA,AC⊥BD,
    ∴△AOB是直角三角形,
    ∴AB==5,
    ∴此菱形的周长为:5×4=1.
    故选:C.
    本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
    7、C
    【解析】
    试题分析:首先把﹣9移到方程右边,再两边直接开平方即可.
    解:移项得;x2=9,
    两边直接开平方得:x=±3,
    故选C.
    考点:解一元二次方程-直接开平方法.
    8、A
    【解析】
    由函数解析式y=2x+3可知k>0,则y随x的增大而增大,比较x的大小即可确定y的大小.
    【详解】
    y=2x+3中k>0,
    ∴y随x的增大而增大,
    ∵-1>-2,
    ∴y1>y2,
    故选A.
    本题考查一次函数的图象及性质;熟练掌握一次函数的k与函数值之间的关系是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即可求得.
    【详解】
    解:y=x-4,
    当y=0时,x-4=0,
    解得:x=4,
    即OA=4,
    过B作BC⊥OA于C,
    ∵△OAB是以OA为斜边的等腰直角三角形,
    ∴BC=OC=AC=2,
    即B点的坐标是(2,2),
    设平移的距离为a,
    则B点的对称点B′的坐标为(a+2,2),
    代入y=x-4得:2=(a+2)-4,
    解得:a=4,
    即△OAB平移的距离是4,
    ∴Rt△OAB扫过的面积为:4×2=1,
    故答案为:1.
    本题考查了一次函数图象上点的坐标特征、等腰直角三角形和平移的性质等知识点,能求出B′的坐标是解此题的关键.
    10、电影票的售价 电影票的张数,票房收入.
    【解析】
    根据常量,变量的定义进行填空即可.
    【详解】
    解:常量是电影票的售价,变量是电影票的张数,票房收入,
    故答案为:电影票的售价;电影票的张数,票房收入.
    本题考查了常量和变量,掌握常量和变量的定义是解题的关键.
    11、y=﹣2x+1
    【解析】
    直接根据“上加下减,左加右减”的原则进行解答.
    【详解】
    把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+1.
    故答案为:y=﹣2x+1.
    本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
    12、
    【解析】
    根据二次根式有意义的条件可得x-4≥0,再解即可.
    【详解】
    由题意得:x−4⩾0,
    解得:x⩾4,
    故答案为:x⩾4
    此题考查二次根式有意义的条件,解题关键在于二次根式有意义的条件得到x-4≥0
    13、60°
    【解析】
    分析:根据线段的垂直平分线的性质得到CA=CE,根据等腰三角形的性质得到∠CAE=∠E,根据三角形的外角的性质得到∠ACB=2∠E,根据等腰三角形的性质得到∠B即可.
    详解:∵MN是AE的垂直平分线,
    ∴CA=CE,
    ∴∠CAE=∠E,
    ∴∠ACB=2∠E,
    ∵AB=AC,
    ∴∠B=∠ACB=2∠E=60°,
    故答案为:60°
    点睛:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(2)
    【解析】
    (1)先证明AC=BD,再证明平行四边形ABCD是矩形即可得到答案;
    (2)证明△AOD为等边三角形,再运用勾股定理求解即可.
    【详解】
    证明:在平行四边形中,



    四边形是矩形
    解:四边形是矩形.


    是等边三角形,

    在中,
    本题考查了矩形的判定和性质,勾股定理,平行四边形的性质,熟练掌握矩形的判定和性质定理是解题的关键.
    15、(1);(2)S=();(3)PQ不能平分△ABC的周长,理由见解析.
    【解析】
    (1)由题意得, PB=6-t,BQ=2t,根据PQ∥AC,得到,代入相应的代数式计算求出t的值;
    (2)由题意得, PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=BP×BQ,列出表达式即可;
    (3)由题意根据勾股定理求得AC=10cm,利用PB+BQ是△ABC周长的一半建立方程解答即可.
    【详解】
    解:(1)由题意得,BP=6-t,BQ=2t,
    ∵PQ∥AC,
    ∴,即,
    解得t=,
    ∴当t=时,PQ∥AC;
    (2)由题意得, PB=6-t,BQ=2t,
    ∵∠B=90°,
    ∴ BP×BQ=×2t×(6-t)= ,
    即ts秒时,S=();
    (3)PQ不能平分△ABC的周长.
    理由:∵在△ABC中,∠B=90°,AB=6cm,BC=8cm,
    ∴AC==10cm,
    设ts后直线PQ将△ABC周长分成相等的两部分,则AP=tcm,BQ=2tcm,BP=(6-t)cm,由题意得
    2t+6-t=×(6+8+10)
    解得:t=6>4,
    所以不存在直线PQ将△ABC周长分成相等的两部分,
    即PQ不能平分△ABC的周长.
    本题考查勾股定理的应用、相似三角形的性质和三角形的面积,灵活运用相似三角形的性质,结合图形求解是解题的关键.
    16、证明过程见解析
    【解析】
    求证BE=DF,即求证△ABE△CDF.
    【详解】
    证明:∵、的平分线、分别交、于点,
    ∴∠ABE=∠EBD,∠BDF=∠FDC
    又四边形ABCD为矩形
    ∴∠ABD=∠CDB,AB=CD
    ∴∠ABE=∠EBD=∠BDF=∠FDC
    在△ABE和△CDF中
    ∴△ABE△CDF
    ∴BE=DF
    本题主要考查了平行线以及全等三角形的性质,全等三角形的判定是解决本题的关键.
    17、(1)证明见解析;(2)△PQR为等腰三角形,理由见解析.
    【解析】
    (1)正方形对角线AC是对角的角平分线,可以证明△ADP≌△DCG,即可求证DP=CG.
    (2)由(1)的结论可以证明△CEQ≌△CEG,进而证明∠PQR=∠QPR.故△PQR为等腰三角形.
    【详解】
    (1)证明:在正方形ABCD中,
    AD=CD,∠ADP=∠DCG=90°,
    ∠CDG+∠ADH=90°,
    ∵DH⊥AP,∴∠DAH+∠ADH=90°,
    ∴∠CDG=∠DAH,
    ∴△ADP≌△DCG,
    ∵DP,CG为全等三角形的对应边,
    ∴DP=CG.
    (2)△PQR为等腰三角形.
    ∵∠QPR=∠DPA,∠PQR=∠CQE,CQ=DP,由(1)的结论可知
    ∴CQ=CG,∵∠QCE=∠GCE,CE=CE,
    ∴△CEQ≌△CEG,即∠CQE=∠CGE,
    ∴∠PQR=∠CGE,
    ∵∠QPR=∠DPA,
    ∴∠PQR=∠QPR,
    所以△PQR为等腰三角形.
    18、(1)见详解;(2) ;.
    【解析】
    (1)由正方形的性质得出AD=AB,AG=AE,∠BAD=∠EAG=90°,由∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,推出∠BAE=∠DAG,由SAS即可证得△DAG≌△BAE;
    (2)①由AB=2,AE=1,由勾股定理得AF=AE=,易证△ABF是等腰三角形,由AE=EF,则直线BE是AF的垂直平分线,设BE的延长线交AF于点O,交AD于点H,则OE=OA=,由勾股定理得OB=,由cs∠ABO=,cs∠ABH=,求得BH=,由勾股定理得AH==,则DH=AD−AH=2−,由∠DHP=∠BHA,∠BAH=∠DPH=90°,证得△BAH∽△DPH,得出,即可求得DP;
    ②由△DAG≌△BAE,得出∠ABE=∠ADG,由∠BPD=∠BAD=90°,则点P的运动轨迹为以BD为直径的,由正方形的性质得出BD=AB=2,由正方形AEFG绕点A按逆时针方向旋转了60°,得出∠BAE=60°,由AB=2AE,得出∠BEA=90°,∠ABE=30°,B、E、F三点共线,同理D、F、G三点共线,则P与F重合,得出∠ABP=30°,则所对的圆心角为60°,由弧长公式即可得出结果.
    【详解】
    解答:(1)证明:在正方形ABCD和正方形AEFG中,AD=AB,AG=AE,∠BAD=∠EAG=90°,
    ∵∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,
    ∴∠BAE=∠DAG,
    在△DAG和△BAE中,

    ∴△DAG≌△BAE(SAS);
    ∴BE=DG;
    (2)解:①∵AB=2AE=2,
    ∴AE=1,
    由勾股定理得,AF=AE=,
    ∵BF=BC=2,
    ∴AB=BF=2,
    ∴△ABF是等腰三角形,
    ∵AE=EF,
    ∴直线BE是AF的垂直平分线
    ,设BE的延长线交AF于点O,交AD于点H,如图3所示:
    则OE=OA=,
    ∴OB=,
    ∵cs∠ABO=,cs∠ABH=,
    ∴BH=,
    AH==,
    ∴DH=AD−AH=2−,
    ∵∠DHP=∠BHA,∠BAH=∠DPH=90°,
    ∴△BAH∽△DPH,
    ∴,

    ∴DP=;

    ∵△DAG≌△BAE,
    ∴∠ABE=∠ADG,
    ∵∠BPD=∠BAD=90°,
    ∴点P的运动轨迹为以BD为直径的,
    BD=AB=2,
    ∵正方形AEFG绕点A按逆时针方向旋转了60°,
    ∴∠BAE=60°,
    ∵AB=2AE,
    ∴∠BEA=90°,∠ABE=30°,
    ∴B、E、F三点共线,
    同理D、F、G三点共线,
    ∴P与F重合,
    ∴∠ABP=30°,
    ∴所对的圆心角为60°,
    ∴旋转过程中点P运动的路线长为:.
    本题是四边形综合题,主要考查了正方形的性质、旋转的性质、等腰三角形的性质、等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质、圆周角定理、勾股定理、三角函数等知识,综合性强,难度大,知识面广.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    应用提取公因式法,公因式x,再运用平方差公式,即可得解.
    【详解】
    解:
    此题主要考查运用提公因式进行因式分解,平方差公式的运用,熟练掌握即可解题.
    20、
    【解析】
    在△AB1D2中利用30°角的性质和勾股定理计算出AD2=,再根据菱形的性质得AB2=AD2=,同理可求AD3和 AD4的值.
    【详解】
    解:在△AB1D2中,
    ∵,
    ∴∠B1AD2=30°,
    ∴B1D2=,
    ∴AD2==,
    ∵四边形AB2C2D2为菱形,
    ∴AB2=AD2=,
    在△AB2D3中,
    ∵,
    ∴∠B2AD3=30°,
    ∴B2D3=,
    ∴AD3== ,
    ∵四边形AB3C3D3为菱形,
    ∴AB3=AD3=,
    在△AB3D4中,
    ∵,
    ∴∠B3AD4=30°,
    ∴B3D4=,
    ∴AD4==,
    故答案为,.
    本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.菱形的面积等于对角线乘积的一半.也考查了锐角三角函数的知识.
    21、
    【解析】
    试题分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGC=∠GAF+∠F=40°,再根据等腰三角形的性质求出∠CAG,然后求出∠CAF=120°,再根据∠BAC=∠CAF-∠BAF求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2BC=2AD,然后利用勾股定理列式计算即可得解.
    试题解析:由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,
    ∵∠ACG=∠AGC,
    ∴∠CAG=180°-∠ACG-∠AGC=180°-2×40°=100°,
    ∴∠CAF=∠CAG+∠GAF=100°+20°=120°,
    ∴∠BAC=∠CAF-∠BAF=30°,
    在Rt△ABC中,AC=2BC=2AD=2,
    由勾股定理,AB=.
    【考点】1.矩形的性质;2.等腰三角形的判定与性质;3.含30度角的直角三角形;4.直角三角形斜边上的中线;5.勾股定理.
    22、
    【解析】
    分析: 过A作AE⊥x轴,过B作BD⊥AE,利用同角的余角相等得到一对角相等,再由一对角相等,且AE=BD=b,OE=AD=a,进而表示出ED和OE+BD的长,即可表示出B坐标,由A与B都在反比例函数图象上,得到A与B横纵坐标乘积相等,列出关系式,变形后即可求出的值.
    详解:过A作AE⊥x轴,过B作BD⊥AE,
    ∵∠OAB=90°,
    ∴∠OAE+∠BAD=90°,
    ∵∠AOE+∠OAE=90°,
    ∴∠BAD=∠AOE,
    在△AOE和△BAD中,
    ∴△AOE≌△BAD(AAS),
    ∴AE=BD=b,OE=AD=a,
    ∴DE=AE-AD=b-a,OE+BD=a+b,
    则B(a+b,b-a),
    ∵A与B都在反比例图象上,得到ab=(a+b)(b-a),整理得:b2-a2=ab,
    即,
    ∵△=1+4=5,
    ∴,
    ∵点A(a,b)为第一象限内一点,
    ∴a>0,b>0,
    则,
    故答案为:.
    点睛:本题主要考查反比例函数图象上点的坐标特征,解决本题的关键是构造全等三角形根据反比例函数上点的坐标特征列关系式.
    23、
    【解析】
    过点A作于点E,根据菱形的性质可推出,过点P作于点F,过点P作直线,作点C关于直线MN的对称点H,连接CH交MN于点G,连接BH交直线MN于点K,连接PH,根据轴对称可得CH=2CG=2,根据两点之间线段最短的性质,PB+PC的最小值为BH的长,根据勾股定理计算即可;
    【详解】
    过点A作于点E,如图,
    ∵边长为4的菱形ABCD中,,
    ∴AB=AC=4,
    ∴在中,

    ∴,
    ∵,
    ∴,
    过点P作于点F,过点P作直线,作点C关于直线MN的对称点H,连接CH交MN于点G,连接BH交直线MN于点K,连接PH,如图,
    则,,
    ∴四边形CGPF是矩形,
    ∴CG=PF,
    ∵,
    ∴,
    ∴PF=1,
    ∴CG=PF=1,
    根据抽对称的性质可得,
    CG=GH,PH=PC,
    ∴CH=2CG=2,
    根据两点之间线段最短的性质,得,

    即,
    ∴PB+PC的最小值为BH的长,
    ∵,,
    ∴,
    ∴在中,

    ∴PB+PC的最小值为.
    故答案为:.
    本题主要考查了菱形的性质,准确分析轴对称的最短路线知识点是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、,.
    【解析】
    分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,最后将除法改成乘法进行约分化简,最后选择a的值时,不能取a=2和a=±1.
    详解:原式=,
    当a=1时,原式=.
    点睛:本题主要考查的是分式的化简求值问题,属于基础题型.学会因式分解是解决分式问题的基本要求.
    25、 (1)x1=,x2=﹣;(2)x1=2,x2=﹣2.
    【解析】
    (1)直接利用公式法求解即可;
    (2)方程整理后,利用直接开平方法求解即可.
    【详解】
    解:(1)a=6,b=﹣1,c=﹣2,
    ∵△=1+48=49,
    ∴x=,
    解得:x1=,x2=﹣;
    (2)
    方程整理得:x2=12,
    开方得:x=±2,
    解得:x1=2,x2=﹣2.
    本题主要考查解一元二次方程,掌握解一元二次方程的方法,并能根据题目灵活选用合适的方法是解题的关键.
    26、(1)y=2x-1;(2)存在点,Q(,), 使以为顶点的四边形为平行四边形.
    【解析】
    (1)由矩形的性质可得出点B的坐标及OA,AB的长,利用勾股定理可求出OB的长,设AD=a,则DE=a,OD=8-a,OE=OB-BE=1-6=2,利用勾股定理可求出a值,进而可得出点D的坐标,再根据点B,D的坐标,利用待定系数法可求出直线BD所对应的函数表达式;
    (2)先假设存在点P 满足条件,过E作 交BC于P作,交BD 于Q点,这样得到点Q,四边形 即为所求平行四边形,过E作 得 , 可得E点坐标, 根据点B、E坐标求出直线BD的解析式, 又 根据平行的直线,k值相等,求出PE解析式, 再求点出P坐标,从而求解.
    【详解】
    (1)由题意,得:点B的坐标为(8,6),OA=8,AB=OC=6,
    ∴OB= =1.
    设AD=a,则DE=a,OD=8-a,OE=OB-BE=1-6=2.
    ∵OD2=OE2+DE2,即(8-a)2=22+a2,
    ∴a=3,
    ∴OD=5,
    ∴点D的坐标为(5,0).
    设直线BD所对应的函数表达式为y=kx+b(k≠0),
    将B(8,6),D(5,0)代入y=kx+b,得:
    解得: ∴直线BD所对应的函数表达式为y=2x-1.
    (2)如图2,假设在线段 上存在点P 使 为顶点的四边形为平行四边形,过E作 交BC于P,过点P作,交BD 于Q点,四边形 即为所求平行四边形,过E作 得 ,,

    直线 ,
    又 , ,
    ,在线段上存在点P(5,6),
    使以为顶点的四边形为平行四边形,
    ∵,设点Q的坐标为(m,2m-1),四边形DEPQ为平行四边形,
    D(5,0),,点P的纵坐标为6,
    ∴6-(2m-1)=-0,解得:m=,
    ∴点Q的坐标为(,).
    ∴存在,点Q的坐标为(,).
    本题考查矩形的性质、勾股定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行四边形的性质,熟练掌握和灵活运用相关知识是解题的关键.
    题号





    总分
    得分
    ∠AOE=∠BAD,
    ∠AEO=∠BDA=90°
    AO=BA
    相关试卷

    2025届江苏省镇江市丹徒区宜城中学九上数学开学经典试题【含答案】: 这是一份2025届江苏省镇江市丹徒区宜城中学九上数学开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省镇江市句容市九上数学开学经典试题【含答案】: 这是一份2024年江苏省镇江市句容市九上数学开学经典试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省镇江市丹徒区、句容区九上数学开学学业水平测试试题【含答案】: 这是一份2024年江苏省镇江市丹徒区、句容区九上数学开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map