江苏省无锡市天一实验学校2024-2025学年九年级数学第一学期开学预测试题【含答案】
展开
这是一份江苏省无锡市天一实验学校2024-2025学年九年级数学第一学期开学预测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)分式方程的解为( )
A.B.C.D.
2、(4分)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为( )
A.12B.14C.16D.24
3、(4分)把根号外的因式移入根号内,结果( )
A.B.C.D.
4、(4分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=( )
A.16crnB.14cmC.12cmD.8cm
5、(4分)下列根式中是最简二次根式的是( )
A.B.C.D.
6、(4分)下列图形既是轴对称图形,又是中心对称图形的是( )
A.三角形B.圆C.角D.平行四边形
7、(4分)如图,、两点在反比例函数的图象上,、两点在反比例函数的图象上,轴于点,轴于点,,,,则的值是( )
A.8B.6C.4D.10
8、(4分)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,一次函数的图象与x轴的交点为,则下列说法:
①y的值随x的值的增大而增大;
②b>0;
③关于x的方程的解为.
其中说法正确的有______只写序号
10、(4分)如图,在矩形中,,,为边上一点,将沿翻折,点落在点处,当为直角三角形时,________.
11、(4分)在一次智力抢答比赛中,四个小组回答正确的情况如下图.这四个小组平均正确回答__________道题目?(结果取整数)
12、(4分)如图,,以点为圆心, 任意长为半径画弧, 交于点,交于点,再分别以点、为圆心,大于长为半径画弧交于点,过点作射线,在射线上截取,过点作, 垂足为点, 则的长为________________.
13、(4分)计算=__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:,其中.
15、(8分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,且BC=2AF。
(1)求证:四边形ADEF为矩形;
(2)若∠C=30°、AF=2,写出矩形ADEF的周长。
16、(8分)先化简,再求值:(1﹣)÷.其中a从0,1,2,﹣1中选取.
17、(10分)分解因式
(1)
(2)
18、(10分)顶点都在格点上的多边形叫做格点多边形.以下的网格中,小正方形的边长为1.请按以下要求,画出一个格点多边形(要标注其它两个顶点字母).
(1)在图甲中,画一个以为一边且面积为15的格点平行四边形;
(2)在图乙中,画一个以为一边的格点矩形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=a,CE=b,H是AF的中点,那么CH的长是______.(用含a、b的代数式表示)
20、(4分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形中,,,则的长为_______________.
21、(4分)一种病毒长度约为0.0000056mm,数据0.0000056用科学记数法可表示为______.
22、(4分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为____.
23、(4分)如图,正比例函数和一次函数的图像相交于点A(2,1).当x>2时,_____________________.(填“>”或“ CF=6
∴点F不可能落在直线AD上
∴.不存在∠EAF=90
综上所述:BE=3或6
故答案为:3或6
本题主要考查的是翻折的性质,矩形的性质,正方形的判定和性质,勾股定理,依据题意画出符合题意的图形是解题的关键.
11、1
【解析】
先求出四个小组回答的总题目数,然后除以4即可.
【详解】
解:这四个小组平均正确回答题目数
(8+1+16+10)≈1(道),
故答案为:1.
本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
12、5cm
【解析】
根据角平分线的性质、RT△中,30°所对的直角边等于斜边的一般,本题得以解决.
【详解】
解:由题意可得,
OC为∠MON的角平分线,
∵,OC平分∠AOB,∴∠MOP=∠MON=30°,
∵,∴∠ODP=90°,
∵OP=10,
∴PD=OP=5,
故答案为:5cm.
本题考查了角平分线的性质及直角三角形的性质,解题的关键是掌握直角三角形的性质.
13、
【解析】
分析:先把各根式化简,然后进行合并即可得到结果.
详解:原式=
=
点睛:本题主要考查二次根式的加减,比较简单.
三、解答题(本大题共5个小题,共48分)
14、;.
【解析】
根据分式的运算法则进行计算,即可求出答案.
【详解】
解:
原式
当时,
原式
本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
15、(1)证明见解析 (2)
【解析】
(1)连接DE.根据三角形的中位线的性质即可得到结论;
(2)根据矩形的性质得到∠BAC=∠FEC=90°,解直角三角形即可得到结论.
【详解】
(1)连接DE,
∵E、F分别是AC,BC中点
∴EF//AB,EF=AB
∵点D是AB中点
∴AD=AB,AD=EF
∴四边形ADFE为平行四边形
∵点D、E分别为AB、AC中点
∴DE=BC,
∵BC=2AF
∴DE=AF
∴四边形ADEF为矩形.
(2)∵四边形ADFE是矩形,
∴∠BAC=∠FEC=90°,
∵AF=2,F为BC中点,
∴BC=4,CF=2,
∵∠C=30°
∴AC=,CE=,EF=1,
∴AE=
∴矩形ADEF的周长为;
本题考查三角形中位线定理及应用,矩形的判定和性质,学生应熟练掌握以上定理即可解题.
16、,
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a=﹣1代入计算即可求出值.
【详解】
原式,
当a=﹣1时,原式=.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
17、(1);(2)
【解析】
(1)先提取-1,然后利用完全平方公式进行因式分解;(2)先提取(a-5),然后利用平方差公式进行因式分解.
【详解】
解:(1)
=
=
(2)
=
=
=
本题考查提公因式和公式法因式分解,掌握因式分解的技巧正确计算是本题的解题关键.
18、(1)见解析;(2)见解析.
【解析】
(1)利用平行四边形及网格的特点即可解决问题;
(2)根据网格的特点构造直角即可求解.
【详解】
如图:(1)四边形ABCD为所求;
(2)四边形ABEF为所求.
本题考查网格−应用与设计,勾股定理,平行四边形的判定和性质,矩形的判定等知识,解题的关键是学会利用数形结合的思想解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
连接AC、CF,根据正方形的性质得到∠ACF=90°,根据勾股定理求出AF的长,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.
【详解】
解:连接AC、CF,
在正方形ABCD和正方形CEFG中,
∠ACG=45°,∠FCG=45°,
∴∠ACF=90°,
∵BC=a,CE=b,
∴AC=a,CF=b,
由勾股定理得,AF==,
∵∠ACF=90°,H是AF的中点,
∴CH=,
故答案为:.
本题考查的是直角三角形的性质、勾股定理的应用、正方形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
20、4
【解析】
首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.
【详解】
解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,
∵AB∥CD,AD∥BC,
∴四边形ABCD为平行四边形,
∴∠ADF=∠ABE,
∵两纸条宽度相同,
∴AF=AE,
∵
∴△ADF≌△ABE,
∴AD=AB,
∴四边形ABCD为菱形,
∴AC与BD相互垂直平分,
∴BD=
故本题答案为:4
本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.
21、5.1×10-1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.0000051=5.1×10-1.
故答案为:5.1×10-1.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
22、1
【解析】
先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出△ABE的周长.
【详解】
∵在△ABC中,∠B=90°,AB=3,AC=5,
∵△ADE是△CDE翻折而成,
∴AE=CE,
∴AE+BE=BC=4,
∴△ABE的周长=AB+BC=3+4=1.
故答案为:1.
本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
23、>
【解析】
根据图像即可判断.
【详解】
解: ∵点A(2,1)
∴x>2 在A点右侧,由图像可知:此时>.
故答案为>
此题考查的是比较一次函数的函数值,结合图像比较一次函数的函数值是解决此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)40,6;(2)见解析;(3)72°;(4)300.
【解析】
(1)利用总人数与个体之间的关系解决问题即可.
(2)根据频数分布表画出条形图即可解决问题.
(3)利用圆心角=360°×百分比计算即可解决问题.
(4)根据成绩在70分以下的百分比乘以总人数即可.
【详解】
(1)抽取的学生成绩有14÷35%=40(个),
则a=40−(8+12+14)=6,
故答案为:40,6;
(2)直方图如图所示:
(3)扇形统计图中“B”的圆心角=360°× =72°.
(4) 成绩在70分以下: =300(人).
此题考查频数分布直方图,扇形统计图,解题关键在于看懂图中数据.
25、选乙代表学校参赛;理由见解析.
【解析】
分别计算出甲、乙2名候选人的平均分和方差即可.
【详解】
解:选乙代表学校参赛;
∵=75,
∴S2甲=[(80﹣75)2+(1﹣75)2+(100﹣75)2+(50﹣75)2]=325,
S2乙═[(75﹣75)2+(80﹣75)2+(75﹣75)2+(1﹣75)2]=12.5,
∵S2甲>S2乙
∴乙的成绩比甲的更稳定,选乙代表学校参赛.
考查了方差的知识,解题的关键是熟记公式并正确的计算,难度不大.
26、(1)(20﹣2x),(12﹣2x);(2)1
【解析】
(1)观察图形根据长宽的变化量用含x的代数式表示即可.
(2)根据(1)中代数式列出方程求解,去掉不合题意的取值.
【详解】
(1)长为(20﹣2x),宽为(12﹣2x)
(2)由题意(20﹣2x)(12﹣2x)=180
240-64x+4x2=180
4x2-64x+60=0
x2-16x+15=0
(x-15)(x-1)=0
解得x1=15(不合题意),x2=1
∴x的取值只能是1,即x=1.
结合图形观察长宽的变化量,根据一元二次方程求解即可.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份江苏省无锡市刘潭实验学校2024年数学九年级第一学期开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省无锡市江阴市南菁高中学实验学校九年级数学第一学期开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省无锡市锡山区天一实验学校九上数学开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。