终身会员
搜索
    上传资料 赚现金

    江苏省大丰区第二中学2024年数学九上开学复习检测模拟试题【含答案】

    立即下载
    加入资料篮
    江苏省大丰区第二中学2024年数学九上开学复习检测模拟试题【含答案】第1页
    江苏省大丰区第二中学2024年数学九上开学复习检测模拟试题【含答案】第2页
    江苏省大丰区第二中学2024年数学九上开学复习检测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省大丰区第二中学2024年数学九上开学复习检测模拟试题【含答案】

    展开

    这是一份江苏省大丰区第二中学2024年数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若关于x的分式方程有增根,则k的值是( )
    A.B.C.2D.1
    2、(4分)某水资源保护组织对邢台某小区的居民进行节约水资源的问卷调查.某居民在问卷的选项代号上画“√”,这个过程是收集数据中的( )
    A.确定调查范围B.汇总调查数据
    C.实施调查D.明确调查问题
    3、(4分)如图,正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形,则∠AED=( )
    A.60°B.65°C.70°D.75°
    4、(4分)某家庭今年上半年1至6月份的月平均用水量5t,其中1至5月份月用水量(单位:t)统计表如图所示,根据信息该户今年上半年1至6月份用水量的中位数和众数分别是( )
    A.4,5
    B.4.5,6
    C.5,6
    D.5.5,6
    5、(4分)将直线向下平移个单位后所得直线的解析式为( )
    A.B.C.D.
    6、(4分)一次函数y=kx+b(k<0,b>0)的图象可能是( )
    A. B. C. D.
    7、(4分)已知,多项式可因式分解为,则的值为( )
    A.-1B.1C.-7D.7
    8、(4分)如图,点E是矩形ABCD的边DC上的点,将△AED沿着AE翻折,点D刚好落在对角线AC的中点D’处,则∠AED的度数为( )
    A.50°B.60°C.70°D.80°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=________度.
    10、(4分)先化简:,再对a选一个你喜欢的值代入,求代数式的值.
    11、(4分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为 .
    12、(4分)直线与坐标轴围成的图形的面积为________.
    13、(4分)比较大小2 _____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知□ABCD中,点E、F分别在AD、BC上,且EF垂直平分对角线AC,垂足为O,求证:四边形AECF是菱形。
    15、(8分)如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.
    (1)求证:△ABD≌△FBC;
    (1)如图(1),求证:AM1+MF1=AF1.
    16、(8分)如图,在平直角坐标系xOy中,直线与反比例函数的图象关于点
    (1)求点P的坐标及反比例函数的解析式;
    (2)点是x轴上的一个动点,若,直接写出n的取值范围.
    17、(10分)已知抛物线的顶点为(2,﹣1),且过(1,0)点.
    (1)求抛物线的解析式;
    (2)在坐标系中画出此抛物线;
    18、(10分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
    (1)求证:OP=OQ;
    (2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③S△EBF=S△EDF+S△EBC;则三个结论中一定成立的是_____.
    20、(4分)若三角形三边分别为6,8,10,那么它最长边上的中线长是_____.
    21、(4分)如图,以点O为圆心的三个同心圆把以OA1为半径的大圆的面积四等分,若OA1=R,则OA4:OA3:OA2:OA1=______________,若有()个同心圆把这个大圆等分,则最小的圆的半径是=_______.
    22、(4分)已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是_____.
    23、(4分)如果一梯子底端离建筑物9 m远,那么15 m长的梯子可到达建筑物的高度是____m.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知正方形的边长为4,、分别为直线、上两点.
    (1)如图1,点在上,点在上,,求证:.
    (2)如图2,点为延长线上一点,作交的延长线于,作于,求的长.
    (3)如图3,点在的延长线上,,点在上,,直线交于,连接,设的面积为,直接写出与的函数关系式.
    25、(10分)已知,求的值.
    26、(12分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为48°,测得底部处的俯角为58°,求乙建筑物的高度.(参考数据:,,,.结果取整数)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    方程两边同乘以x-5可化为x-6+(x-5)=-k,由关于x的分式方程有增根可得x=5,把x=5代入x-6+(x-5)=-k即可求得k值.
    【详解】
    方程两边同乘以x-5得,
    x-6+(x-5)=-k,
    ∵关于x的分式方程有增根,
    ∴x=5,
    把x=5代入x-6+(x-5)=-k得,
    5-6=-k
    k=1.
    故选D.
    本题考查了分式方程的增根,熟知使分式方程最简公分母等于0的未知数的值是分式方程的增根是解决问题的关键.
    2、C
    【解析】
    根据收集数据的几个阶段可以判断某居民在问卷上的选项代号画“√”,属于哪个阶段,本题得以解决.
    【详解】
    解:某居民在问卷上的选项代号画“√”,这是数据中的实施调查阶段,
    故选:C.
    本题考查调查收集数据的过程与方法,解题的关键是明确收集数据的几个阶段.
    3、D
    【解析】
    由题意可证△ABF≌△ADE,可得∠BAF=∠DAE=15°,可求∠AED=75°.
    【详解】
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠B=∠C=∠D=∠DAB=90°,
    ∵△AEF是等边三角形,
    ∴AE=AF,∠EAF=60°,
    ∵AD=AB,AF=AE,
    ∴△ABF≌△ADE(HL),
    ∴∠BAF=∠DAE==15°,
    ∴∠AED=75°,
    故选D.
    本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,熟练运用这些性质和判定解决问题是本题的关键.
    4、D
    【解析】
    先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.
    【详解】
    解:根据题意知6月份的用水量为5×6-(3+6+4+5+6)=6(t),
    ∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,
    则该户今年1至6月份用水量的中位数为=5.5、众数为6,
    故选:D.
    本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.
    5、D
    【解析】
    只向下平移,让比例系数不变,常数项减去平移的单位即可.
    【详解】
    直线向下平移个单位后所得直线的解析式为
    故选:D
    本题考查了一次函数图象与几何变换,解题的关键是熟记函数平移的规则“上加下减”.本题属于基础题,难度不大,解决该题型题目时,根据平移的规则求出平移后的函数解析式是关键.
    6、C
    【解析】
    根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.
    【详解】
    ∵k<0,
    ∴一次函数y=kx+b的图象经过第二、四象限.
    又∵b>0时,
    ∴一次函数y=kx+b的图象与y轴交与正半轴.
    综上所述,该一次函数图象经过第一象限.
    故答案为:C.
    考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
    7、B
    【解析】
    根据因式分解与整式的乘法互为逆运算,把利用乘法公式展开,即可求出m的值.
    【详解】
    =
    又多项式可因式分解为
    ∴m=1
    故选B
    此题考查了因式分解的意义,用到的知识点是因式分解与整式的乘法互为逆运算,是一道基础题.
    8、B
    【解析】
    由折叠的性质可得AD=AD'=AC,∠D=∠AD'E=90°,∠DAE=∠CAE,可求∠ACD=30°,由直角三角形的性质可求∠AED的度数.
    【详解】
    解:∵将△AED沿着AE翻折,点D刚好落在对角线AC的中点D′处,
    ∴AD=AD'=AC,∠D=∠AD'E=90°,∠DAE=∠CAE
    ∴∠ACD=30°,
    ∴∠DAC=60°,且∠DAE=∠CAE
    ∴∠DAE=∠CAE=30°,且∠D=90°
    ∴∠AED=60°
    故选:B.
    本题考查了翻折变换,矩形的性质,熟练运用折叠的性质是本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、67.1.
    【解析】
    由四边形ABCD是正方形,可得AB=BC,∠CBD=41°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.
    【详解】
    解:因为四边形ABCD是正方形,
    所以AB=BC,∠CBD=41°,
    根据折叠的性质可得:A′B=AB,
    所以A′B=BC,
    所以∠BA′C=∠BCA′==67.1°.
    故答案为:67.1.
    此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.
    10、;3
    【解析】
    原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a=3代入计算即可求出值.
    【详解】
    原式.
    ∵且
    ∴当a=3时,原式=
    此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
    11、7
    【解析】
    试题分析:如图,过点A做BC边上高,所以EP AM,所以∆BFP~∆BAM,∆CAM~CEP,因为AF=2,BF=3,AB=AC=5,所以, BM=CM,所以 ,因此CE=7
    12、1
    【解析】
    由一次函数的解析式求得与坐标轴的交点,然后利用三角形的面积公式即可得出结论.
    【详解】
    由一次函数y=x+4可知:一次函数与x轴的交点为(-4,0),与y轴的交点为(0,4),
    ∴其图象与两坐标轴围成的图形面积=×4×4=1.
    故答案为:1.
    本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    13、<
    【解析】
    直接利用二次根式的性质将原数变形进而得出答案.
    【详解】
    ∵2=<.
    故答案为:<.
    本题主要考查了实数大小比较,正确将原数变形是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、证明见解析
    【解析】
    试题分析:先根据垂直平分线的性质得所以∠1=∠2,
    ∠3=∠4;再结合平行线的性质得出∠1=∠4=∠3,即 利用四条边相等的四边形是菱形即可证明
    试题解析:∵EF垂直平分AC,
    ∴AO=OC,AE=CE,AF=CF,
    ∴∠1=∠2,∠3=∠4,
    又∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠1=∠4=∠3,
    ∴AF=AE,
    ∴AE=EC=CF=FA,
    ∴四边形AECF是菱形.
    点睛:菱形的判定:四条边相等的四边形是菱形.
    15、(1)证明见详解;(1)证明见详解
    【解析】
    (1)根据四边形ABFG、BCED是正方形得到两对边相等,一对直角相等,根据图形利用等式的性质得到一对角相等,利用SAS即可得到三角形全等;
    (1)根据全等三角形的性质和勾股定理即可得到结论.
    【详解】
    解:(1)∵四边形ABFG、BCED是正方形,
    ∴AB=FB,CB=DB,∠ABF=∠CBD=90°,
    ∴∠ABF+∠ABC=∠CBD+∠ABC,
    即∠ABD=∠CBF,
    在△ABD和△FBC中,

    ∴△ABD≌△FBC(SAS);
    (1)∵△ABD≌△FBC,
    ∴∠BAD=∠BFC,
    ∴∠AMF=180°-∠BAD-∠CNA=180°-(∠BFC+∠BNF)=180°-90°=90°,
    ∴AM1+MF1=AF1.
    此题考查了全等三角形的判定与性质,正方形的性质,勾股定理,熟练掌握全等三角形的判定定理是解题的关键.
    16、(1);(2)
    【解析】
    (1)先把P(1,a)代入y=x+2,求出a的值,确定P点坐标为(1,3),然后把P(1,3)代入y=求出k的值,从而可确定反比例函数的解析式;
    (2)过P作PB⊥x轴于点B,则B点坐标为(1,0),PB=3,然后利用PQ≤1,由垂线段最短可知,PQ≥3,然后利用PQ≤1,在直角三角形PBQ中,PQ=1时,易确定n的取值范围,要注意分点Q在点B左右两种情况.当点Q在点B左侧时,点Q坐标为(-3,0);当点Q在点B右侧时,点Q坐标为(1,0),从而确定n的取值范围.
    【详解】
    解:(1)∵直线与反比例函数的图象交于点,
    ∴.
    ∴点P的坐标为.
    ∴.
    ∴反比例函数的解析式为.
    (2)过P作PB⊥x轴于点B,
    ∵点P的坐标为(1,3),Q(n,0)是x轴上的一个动点,PQ≤1,
    由勾股定理得BQ≤,
    ∴1-4=-3,1+4=1,
    ∴n的取值范围为-3≤n≤1.
    本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了勾股定理的应用.
    17、(1)y=(x﹣2)2﹣1;(2)见解析
    【解析】
    (1)设顶点式y=a(x-2)2-1,然后把(1,0)代入求出a即可;
    (2)利用描点法画函数图象;
    【详解】
    (1)设抛物线解析式为y=a(x﹣2)2﹣1,
    把(1,0)代入得a•1﹣1=0,解得a=1,
    所以抛物线解析式为y=(x﹣2)2﹣1;
    (2)如图如下,抛物线的顶点坐标为(2,﹣1),
    抛物线与x轴的交点坐标为(1,0),(3,0),抛物线与y轴的交点坐标为(0,3).
    本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
    18、(1)证明见解析(2)
    【解析】
    试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
    (2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
    试题解析:(1)证明:因为四边形ABCD是矩形,
    所以AD∥BC,
    所以∠PDO=∠QBO,
    又因为O为BD的中点,
    所以OB=OD,
    在△POD与△QOB中,
    ∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
    所以△POD≌△QOB,
    所以OP=OQ.
    (2)解:PD=8-t,
    因为四边形PBQD是菱形,
    所以PD=BP=8-t,
    因为四边形ABCD是矩形,
    所以∠A=90°,
    在Rt△ABP中,
    由勾股定理得:,
    即,
    解得:t=,
    即运动时间为秒时,四边形PBQD是菱形.
    考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、①③
    【解析】
    由垂直的定义得到∠AFB=90°,根据平行线的性质即可得到∠AFB=∠CBF=90°,故①正确;延长FE交BC的延长线与M,根据全等三角形的性质得到EF=EM=FM,根据直角三角形的性质得到BE=FM,等量代换的EF=BE,故②错误;由于S△BEF=S△BME,S△DFE=S△CME,于是得到S△EBF=S△BME=S△EDF+S△EBC.故③正确.
    【详解】
    解:∵BF⊥AD,
    ∴∠AFB=90°,
    ∵在平行四边形ABCD中,AD∥BC,
    ∴∠AFB=∠CBF=90°,故①正确;
    延长FE交BC的延长线与M,
    ∴∠DFE=∠M,
    在△DFE与△CME中,,
    ∴△DFE≌△CME(AAS),
    ∴EF=EM=FM,
    ∵∠FBM=90°,
    ∴BE=FM,
    ∴EF=BE,
    ∵EF≠DE,
    故②错误;
    ∵EF=EM,
    ∴S△BEF=S△BME,
    ∵△DFE≌△CME,
    ∴S△DFE=S△CME,
    ∴S△EBF=S△BME=S△EDF+S△EBC.故③正确.
    故答案为:①③.
    此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△DEF≌△CME是解题关键.
    20、1
    【解析】
    根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.
    【详解】
    解:∵三角形三边分别为6,8,10,62+82=102,
    ∴该三角形为直角三角形,
    ∵最长边即斜边为10,
    ∴斜边上的中线长为:1,
    故答案为1.
    本题考查了勾股定理的逆定理、直角三角形斜边中线的性质,熟练掌握勾股定理的逆定理以及直角三角形斜边中线的性质是解题的关键.
    21、
    【解析】
    根据每个圆与大圆的面积关系,即可求出每个圆的半径长,即可得到结论.
    【详解】
    ∵π•OA42=π•OA12,
    ∴O A42=OA12,
    ∴O A4=OA1;
    ∵π•OA32=π•OA12,
    ∴O A32=OA12,
    ∴O A3=OA1;
    ∵π•OA22=π•OA12,
    ∴O A22=OA12,
    ∴O A2=OA1;
    ∵OA1=R
    因此这三个圆的半径为:O A2=R,O A3=R,O A4=R.
    ∴OA4:OA3:OA2:OA1=
    由此可得,有()个同心圆把这个大圆等分,则最小的圆的半径是=
    故答案为:(1);(2).
    本题考查了算术平方根的定义和性质;弄清每个圆与大圆的面积关系是解题的关键.
    22、或
    【解析】
    先根据面积求出三角形在y轴上边的长度,再分正半轴和负半轴两种情况讨论求解.
    【详解】
    根据题意,一次函数y=kx+b(k≠0)的图象与y轴交点坐标为(0,b),
    则×2×|b|=1,
    解得|b|=1,
    ∴b=±1,
    ①当b=1时,与y轴交点为(0,1),
    ∴2k+1=0,解得k=-,∴函数解析式为y=-x+1;
    ②当b=-1时,与y轴的交点为(0,-1),
    ∴2k-1=0,解得k=,∴函数解析式为y=-x-1,
    综上,这个一次函数的解析式是或,
    故答案为:或.
    本题考查了待定系数法求一次函数解析式,先根据三角形面积求出与y轴的交点,再利用待定系数法求函数解析式,本题需要注意有两种情况.
    23、12
    【解析】
    ∵直角三角形的斜边长为15m,一直角边长为9m,
    ∴另一直角边长=,
    故梯子可到达建筑物的高度是12m.
    故答案是:12m.
    二、解答题(本大题共3个小题,共30分)
    24、(1)详见解析;(2)4;(3)
    【解析】
    (1)先证出,得到,则有;
    (2)延长交的延长线于,先证出,得到,再由直角三角形的性质得到;
    (3)过作交于,交于,先证得得到,再进一步得到及,所以,,所以.
    【详解】
    (1)证明:∵四边形是正方形,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴.
    (2)解:延长交的延长线于,
    ∵四边形是正方形,
    ∴,,
    ∵,
    ∴,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴.
    (3).
    证明:过作交于,交于,
    则,易得
    ∴,
    ∴,
    由此可证平分,
    ∴,
    ∴,
    ∴,
    ∴为等腰直角三角形,
    ∴,
    ∴,
    ∴,
    ∴.
    本题考查了正方形的综合,熟练掌握正方形和三角形全等的判定与性质,添加恰当的辅助线是解题关键.
    25、-.
    【解析】
    将分式通分、化简,再将已知条件变形,整体代入.
    【详解】
    解:
    = -÷
    = -
    =-

    ∴1-
    即1-=1-
    ∴-=-
    ∴原式=-
    本题考查分式的化简,整体代入的思想.
    26、38m.
    【解析】
    作AE⊥CD交CD的延长线于点E,根据正切的定义分别求出CE、DE,结合图形计算即可.
    【详解】
    如图,作AE⊥CD交CD的延长线于点E,则四边形ABCE是矩形,
    ∴AE=BC=78m,
    在Rt△ACE中,tan∠CAE=,
    ∴CE=AE⋅tan58°≈78×1.60=124.8(m)
    在Rt△ADE中,tan∠DAE=,
    ∴DE=AE⋅tan48°≈78×1.11=86.58(m)
    ∴CD=CE−DE=124.8−86.58≈38(m)
    答:乙建筑物的高度CD约为38m.
    此题考查解直角三角形,三角函数,解题关键在于作辅助线和掌握三角函数定义.
    题号





    总分
    得分
    月份
    1
    2
    3
    4
    5
    6
    用水量/t
    3
    6
    4
    5
    6
    a

    相关试卷

    2025届江苏省盐城市大丰区共同体数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2025届江苏省盐城市大丰区共同体数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届江苏省姜堰区九上数学开学复习检测模拟试题【含答案】:

    这是一份2025届江苏省姜堰区九上数学开学复习检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届江苏省大丰市小海中学数学九上开学监测模拟试题【含答案】:

    这是一份2025届江苏省大丰市小海中学数学九上开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map