吉林省长春市南关区东北师大附中2024年数学九上开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)龙华区某校改造过程中,需要整修校门口一段全长2400m的道路,为了保证开学前师生进出不受影响,实际工作效率比原计划提高了,结果提前8天完成任务,若设原计划每天整个道路x米,根据题意可得方程( )
A.B.
C.D.
2、(4分)下列分解因式正确的是( )
A.-a+a3=-a(1+a2)B.2a-4b+2=2(a-2b)
C.a2-4=(a-2)2D.a2-2a+1=(a-1)2
3、(4分)如图所示,在中,的垂直平分线交于点,交于点,如果,则的周长是( )
A.B.C.D.
4、(4分)三个连续自然数的和小于15,这样的自然数组共有( )
A.6组B.5组C.4组D.3组
5、(4分)某水果超市从生产基地以4元/千克购进一种水果,在运输和销售过程中有10%的自然损耗.假设不计其他费用,超市要使销售这种水果的利润不低于35%,那么售价至少为( )
A.5.5元/千克B.5.4元/千克C.6.2元/千克D.6元/千克
6、(4分)如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有( )
A.1个B.2个C.3个D.4个
7、(4分)如图,添加下列条件仍然不能使▱ABCD成为菱形的是( )
A.AB=BCB.AC⊥BDC.∠ABC=90°D.∠1=∠2
8、(4分)在平行四边形中,,,的垂直平分线交于点,则的周长是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)己知反比例函数的图像经过第一、三象限,则常数的取值范围是___.
10、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,∠ADB=30°,AB=4,则 OC=_____.
11、(4分)因式分解:x2﹣x=______.
12、(4分)如图,在正方形中,对角线与相交于点,为上一点,,为的中点.若的周长为18,则的长为________.
13、(4分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若
DE=5,则AB的长为 ▲ .
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程:﹣=1
15、(8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)本次接受调查的跳水运动员人数为 ,图①中m的值为 ;
(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
16、(8分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根
据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 名同学;
(2)条形统计图中,m= ,n= ;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是 度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
17、(10分)正方形的对角线相交于点,点又是正方形的一个顶点,而且这两个正方形的边长相等.试证明:无论正方形绕点怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的.
18、(10分)(1)化简;(m+2+)•
(2)先化简,再求值;(+x+2)÷,其中|x|=2
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在函数的图象上有两个点,,则的大小关系是___________.
20、(4分)将函数的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是____.
21、(4分)平行四边形的对角线长分别是、,则它的边长的取值范围是__________.
22、(4分)把抛物线yx2向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为_____.
23、(4分)如图,如果要使 ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)一次函数y =kx+b()的图象经过点,,求一次函数的表达式.
25、(10分)如图,□ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.
(1)求证:四边形CMAN是平行四边形.
(2)已知DE=4,FN=3,求BN的长.
26、(12分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
直接利用施工时间提前8天完成任务进而得出等式求出答案.
【详解】
解:设原计划每天整修道路x米,根据题意可得方程:
.
故选:A.
本题考查由实际问题抽象出分式方程,正确找出等量关系是解题关键.
2、D
【解析】
根据因式分解的定义进行分析.
【详解】
A、-a+a3=-a(1-a2)=-a(1+a)(1-a),故本选项错误;
B、2a-4b+2=2(a-2b+1),故本选项错误;
C、a2-4=(a-2)(a+2),故本选项错误;
D、a2-2a+1=(a-1)2,故本选项正确.
故选D.
考核知识点:因式分解.
3、D
【解析】
根据线段垂直平分线的性质得出AD=BD,推出CD+BD=5,即可求出答案.
【详解】
解:∵DE是AB的垂直平分线,
∴AD=DB,
∵AC=5,
∴AD+CD=5,
∴CD+BD=5,
∵BC=4,
∴△BCD的周长为:CD+BD+BC=5+4=9,
故选D.
本题考查了线段垂直平分线的性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.
4、C
【解析】
解:设这三个连续自然数为:x-1,x,x+1,
则0<x-1+x+x+1<15,
即0<3x<15,
∴0<x<5,
因此x=1,2,3,1.
共有1组.
故应选C.
5、D
【解析】
设这种水果每千克的售价为x元,购进这批水果m千克,根据这种水果的利润不低于35%列不等式求解即可.
【详解】
设这种水果每千克的售价为x元,购进这批水果m千克,根据题意,得
(1-10%)mx-4m≥4m×35%,
解得x≥6,
答:售价至少为6元/千克.
故选D.
此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.
6、C
【解析】
连接EC,作CH⊥EF于H.首先证明△BAD≌△CAE,再证明△EFC是等边三角形即可解决问题;
【详解】
连接EC,作CH⊥EF于H.
∵△ABC,△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=∠ACB=60°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴BD=EC=1,∠ACE=∠ABD=60°,
∵EF∥BC,
∴∠EFC=∠ACB=60°,
∴△EFC是等边三角形,CH=,
∴EF=EC=BD,∵EF∥BD,
∴四边形BDEF是平行四边形,故②正确,
∵BD=CF=1,BA=BC,∠ABD=∠BCF,
∴△ABD≌△BCF,故①正确,
∵S平行四边形BDEF=BD•CH=,
故③正确,
∵△ABC是边长为3的等边三角形,S△ABC=
∴S△ABD
∴S△AEF= S△AEC=•S△ABD=
故④错误,
故选C.
本题考查平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考选择题中的压轴题.
7、C
【解析】
根据菱形的性质逐个进行证明,再进行判断即可.
【详解】
A、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形,故本选项错误;
B、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故本选项错误;C、∵四边形ABCD是平行四边形和∠ABC=90°不能推出,平行四边形ABCD是菱形,故本选项正确;
D、∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ADB=∠2,∵∠1=∠2,∴∠1=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,故本选项错误;
故选C.
本题考查了平行四边形的性质,菱形的判定的应用,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.
8、C
【解析】
根据垂直平分线的性质可得AE=CE,再根据平行四边形对边相等即可得解.
【详解】
解:∵ 的垂直平分线交于点E
∴AE=CE,
又∵四边形是平行四边形,
∴AD=BC=6,CD=AB=4,
∴C△CDE=CD+CE+DE=CD+AE+DE=CD+AD=4+6=10.
故选C.
本题主要考查平行四边形与垂直平分线的性质,解此题的关键在于熟练掌握其知识点.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据反比例函数的性质可得3k+1>0,再解不等式即可.
【详解】
∵双曲线的图象经过第一、三象限,
∴3k+1>0,
解得.
故答案为:.
此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质.对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.
10、1
【解析】
解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,∠BAD=90°,∵∠ADB=30°,∴AC=BD=2AB=8,∴OC=AC=1.故答案为1.
点睛:此题考查了矩形的性质、含30°角的直角三角形的性质.熟练掌握矩形的性质,注意掌握数形结合思想的应用.
11、x(x﹣1)
【解析】分析:提取公因式x即可.
详解:x2−x=x(x−1).
故答案为:x(x−1).
点解:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.
12、
【解析】
先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.
【详解】
解:∵四边形是正方形,
∴,,.
在中,为的中点,
∴.
∵的周长为18,,
∴,
∴.
在中,根据勾股定理,得,
∴,
∴.
在中,∵,为的中点,
又∵为的中位线,
∴.
故答案为:.
本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.
13、1
【解析】
解:∵在△ABC中,AD⊥BC,垂足为D,
∴△ADC是直角三角形;
∵E是AC的中点.
∴DE=AC(直角三角形的斜边上的中线是斜边的一半);
又∵DE=5,AB=AC,
∴AB=1;
故答案为:1.
三、解答题(本大题共5个小题,共48分)
14、x=1.
【解析】
分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
原方程可变为:﹣=1,
方程两边同乘(x﹣2),得1﹣(x﹣1)=x﹣2,
解得:x=1,
检验:当x=1时,x﹣2≠0,
∴原方程的解为x=1.
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
15、(1)40人;1;(2)平均数是15;众数16;中位数15.
【解析】
(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.
【详解】
解:(1)4÷10%=40(人),
m=100-27.5-25-7.5-10=1;
故答案为40,1.
(2)观察条形统计图,
∵,
∴这组数据的平均数为15;
∵在这组数据中,16出现了12次,出现的次数最多,
∴这组数据的众数为16;
∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,
∴这组数据的中位数为15.
本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.
16、解:(1)1.
(2) 40;2.
(3)3.
(4)学校购买其他类读物900册比较合理.
【解析】
(1)∵从条形图得出文学类人数为:70,从扇形图得出文学类所占百分比为:35%,
∴本次调查中,一共调查了:70÷35%=1人.
(2)∵从扇形图得出科普类所占百分比为:30%,
∴科普类人数为:n=1×30%=2人, 艺术类人数为:m=1﹣70﹣30﹣2=40人.
(3)根据艺术类读物所在扇形的圆心角是:40÷1×32°=3°.
(4)根据喜欢其他类读物人数所占的百分比为 ,
则200册中其他读物的数量: (本).
17、见解析.
【解析】
分两种情况讨论:(1)当正方形边与正方形的对角线重合时;(2)当转到一般位置时,由题求证,故两个正方形重叠部分的面积等于三角形的面积,得出结论.
【详解】
(1)当正方形绕点转动到其边,分别于正方形的两条对角线重合这一特殊位置时,
显然;
(2)当正方形绕点转动到如图位置时,
∵四边形为正方形,
∴,,,即
又∵四边形为正方形,
∴,即,
∴,
在和中,
,
∴,
∵,
又,
∴.
此题考查正方形的性质,三角形全等的判定与性质,三角形的面积等知识点.
18、(1)m+1;(2)1
【解析】
(1)先对括号里面的式子进行合并,再利用完全平方公式进行计算即可解答.
(2)先合并括号里面的,再把除法变成乘法,约分合并,最后把|x|=2,代入即可.
【详解】
解:(1)原式==m+1;
(2)原式= ,
由|x|=2,得到x=2或﹣2(舍去),
当x=2时,原式=1.
此题考查分式的化简求值,解题关键在于掌握运算法则.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y1>y2
【解析】
分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质,由k的值判断函数的增减性,由此比较即可.
详解:∵k=-5<0
∴y随x增大而减小,
∵-2<5
∴>.
故答案为:>.
点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.
20、y=-4x-1
【解析】
根据函数图象的平移规律:上加下减,可得答案.
【详解】
解:将函数y=-4x的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是y=-4x-1.
故答案为:y=-4x-1.
本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键.
21、
【解析】
根据平行四边形的性质:平行四边形的对角线互相平分.得两条对角线的一半分别是5,8;再根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.进行求解.
【详解】
根据平行四边形的性质,得对角线的一半分别是5和8.
再根据三角形的三边关系,得.
故答案为.
本题考查了三角形的三边关系,掌握任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.
22、y=(x+1)1-1
【解析】
先由平移方式确定新抛物线的顶点坐标.然后可得出顶点式的解析式。
【详解】
解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1).
可设新抛物线的解析式为:y=(x-h)1+k,
代入得:y=(x+1)1-1.
故答案为:y=(x+1)1-1
此题考查了二次函数图象与几何变换以及一般式转化顶点式,正确将一般式转化为顶点式是解题关键.
23、AB=BC(答案不唯一)
【解析】
试题解析:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC或AC⊥BD.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
用待定系数法求一次函数的解析式即可.
【详解】
解:依题意得
解得
∴一次函数的表达式为.
故答案为.
本题考查用待定系数法求一次函数的解析式,掌握方程组的解法是解题的关键.
25、(1)详见解析;(2)1.
【解析】
试题分析:(1)通过AE⊥BD,CF⊥BD证明AE∥CF,再由四边形ABCD是平行四边形得到AB∥CD,由两组对边分别平行的四边形是平行四边形可证得四边形CMAN是平行四边形;(2)证明△MDE≌∠NBF,根据全等三角形的性质可得DE=BF=4,再由勾股定理得BN=1.
试题解析:(1)证明:∵AE⊥BD CF⊥BD
∴AE∥CF
又∵四边形ABCD是平行四边形
∴AB∥CD
∴四边形CMAN是平行四边形
(2)由(1)知四边形CMAN是平行四边形
∴CM=AN.
又∵四边形ABCD是平行四边形
∴ AB=CD,∠MDE=∠NBF.
∴AB-AN=CD-CM,即DM=BN.
在△MDE和∠NBF中
∠MDE=∠NBF,∠DEM=∠BFN=90°,DM=BN
∴△MDE≌∠NBF
∴DE=BF=4,
由勾股定理得BN===1.
答:BN的长为1.
考点:平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.
26、(1);(2);(3)P(,0).
【解析】
(1)把A的坐标代入即可求出结果;
(2)先把B的坐标代入得到B(4,1),把A和B的坐标,代入即可求得一次函数的解析式;
(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,求出直线AB′与x轴的交点即为P点的坐标.
【详解】
(1)把A(1,4)代入得:m=4,
∴反比例函数的解析式为:;
(2)把B(4,n)代入得:n=1,∴B(4,1),把A(1,4),B(4,1)代入,得:,
∴,
∴一次函数的解析式为:;
(3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,由作图知,B′(4,﹣1),
∴直线AB′的解析式为:,当y=0时,x=,
∴P(,0).
题号
一
二
三
四
五
总分
得分
吉林省长春市南关区东北师大附中新城校区2024-2025学年九上数学开学学业水平测试模拟试题【含答案】: 这是一份吉林省长春市南关区东北师大附中新城校区2024-2025学年九上数学开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
吉林省长春市南关区东北师大附中2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份吉林省长春市南关区东北师大附中2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
吉林省长春市东北师大附中(明珠校区)2024-2025学年数学九上开学调研模拟试题【含答案】: 这是一份吉林省长春市东北师大附中(明珠校区)2024-2025学年数学九上开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。