吉林省2024-2025学年数学九上开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列方程中是一元二次方程的是( )
A.x2﹣1=0B.y=2x2+1C.x+ =0D.x2+y2=1
2、(4分)已知a、b、c是的三边,且满足,则一定是( )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形
3、(4分)计算(2+)(﹣2)的结果是( )
A.1B.0C.﹣1D.﹣7
4、(4分)某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为( )
A.B.
C.D.
5、(4分)若分式的值为0,则x的值是( )
A.2或﹣2B.2C.﹣2D.0
6、(4分)已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的( )
A.B.C.D.
7、(4分)对于一次函数y=(3k+6)x﹣k,y随x的增大而减小,则k的取值范围是( )
A.k<0B.k<﹣2C.k>﹣2D.﹣2<k<0
8、(4分)某校在“我运动,我快乐”的技能比赛培训活动中,在相同条件下,对甲、乙两名同学的“单手运球”项目进行了5次测试,测试成绩(单位:分)如下:根据右图判断正确的是( )
A.甲成绩的平均分低于乙成绩的平均分;
B.甲成绩的中位数高于乙成绩的中位数;
C.甲成绩的众数高于乙成绩的众数;
D.甲成绩的方差低于乙成绩的方差.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平行四边形ABCD中,∠B+∠D=190°,则∠A=_____°.
10、(4分)如图,▱ABCD中,∠ABC=60°,AB=4,AD=8,点E,F分别是边BC,AD的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是______.
11、(4分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为1,5,1,1.则最大的正方形E的面积是___.
12、(4分)已知点P(-2,1),则点P关于x轴对称的点的坐标是__.
13、(4分)若直角三角形的两边分别为1分米和2分米,则斜边上的中线长为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校组织春游活动,提供了A、B、C、D四个景区供学生选择,并把选择最多的景区作为本次春游活动的目的地。经过抽样调查,并将采集的数据绘制成如下两幅不完整的统计图,请根据图①、②所提供的信息,解答下列问题:
(1)本次抽样调查的学生有______名,其中选择景区A的学生的频率是______:
(2)请将图②补充完整:
(3)若该校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生选择景区C?(要有解答过程)
15、(8分)以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.
(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是 ;
(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;
(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.
16、(8分)如图,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.
(1)求证:AG=C′G;
(2) 求△BDG的面积.
17、(10分)如图,在由边长为1的小正方形组成的网格中,的三个顶点均在格点上,请解答:
(1)判断的形状,并说明理由;
(2)在网格图中画出AD//BC,且AD=BC;
(3)连接CD,若E为BC中点,F为AD中点,四边形AECF是什么特殊的四边形?请说明理由.
18、(10分)先化简,再求值:;其中a=.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图如果以正方形的对角线为边作第二个正方形,再以对角线为边作第三个正方形,如此下去,…,已知正方形的面积为1,按上述方法所作的正方形的面积依次为,…(为正整数),那么第8个正方形的面积__.
20、(4分)已知直线与平行且经过点,则的表达式是__________.
21、(4分)若关于的一次函数(为常数)中,随的增大而减小,则的取值范围是____.
22、(4分)如图,正方形的边长为12,点、分别在、上,若,且,则______.
23、(4分)与向量相等的向量是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知四边形为平行四边形,于点,于点.
(1)求证:;
(2)若、分别为边、上的点,且,证明:四边形是平行四边形.
25、(10分)某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了多销售,增加利润,超市准备适当降价。据测算,若每箱降价2元,每天可多售出4箱.
(1)如果要使每天销售饮料获利14000元,则每箱应降价多少元?
(2)每天销售饮料获利能达到15000元吗?若能,则每箱应降价多少元?若不能,请说明理由.
26、(12分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
解:A.x2﹣1=0是一元二次方程,故A正确;
B.y=2x2+1是二次函数,故B错误;
C.x+=0是分式方程,故C错误;
D.x2+y2=1中含有两个未知数,故D错误.
故选A.
2、C
【解析】
由a3-ac2-ab2=0知a(a2-c2-b2)=0,结合a≠0得出a2=b2+c2,根据勾股定理逆定理可得答案.
【详解】
解:∵a、b、c是△ABC的三边,
∴a≠0,b≠0,c≠0,
又a3-ac2-ab2=0,
∴a(a2-c2-b2)=0,
则a2-c2-b2=0,即a2=b2+c2,
∴△ABC一定是直角三角形.
故选:C.
本题考查因式分解的应用,解题的关键是掌握勾股定理逆定理与因式分解的运用.
3、C
【解析】
分析:
根据二次根式的乘法法则结合平方差公式进行计算即可.
详解:
原式=.
故选C.
点睛:熟记“二次根式的乘法法则和平方差公式”是正确解答本题的关键.
4、C
【解析】
设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.
5、A
【解析】
直接利用分式的值为零则分子为零进而得出答案.
【详解】
∵分式的值为0,
∴x1﹣4=0,
解得:x=1或﹣1.
故选A.
此题主要考查了分式的值为零的条件,正确把握定义是解题关键.
6、D
【解析】
根据正比例函数的图象经过第一,三象限可得:, 因此在一次函数中,,根据直线倾斜方向向右上方,直线与y轴的交点在y轴负半轴,画出图象即可求解.
【详解】
根据正比例函数的图象经过第一,三象限可得:
所以,
所以一次函数中,,
所以一次函数图象经过一,三,四象限,
故选D.
本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质.
7、B
【解析】
根据题意和一次函数的性质,当y随x的增大而减小时,3k+6<0,解之即可求解.
【详解】
∵一次函数y=(3k+6)x-k,函数值y随x的增大而减小,
∴3k+6<0,
解得:k<-2,
故选:B.
本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,掌握一次函数的增减性.
8、D
【解析】
通过计算甲、乙的平均数可对A进行判断;利用中位数的定义对B进行判断;利用众数的定义对C进行判断;根据方差公式计算出甲、乙的方差,则可对D进行判断.
【详解】
甲的平均数= (分),乙的平均数= =8 (分) ,所以A选项错误;
甲的中位数是8分,乙的中位数是9分,故B选项错误;
甲的众数是8分,乙的众数是10分,故C选项错误;
甲的方差=,乙的方差=,故D选项正确,
故选:D.
此题考查数据的统计计算,正确掌握平均数的计算公式,众数、中位数的计算方法,方差的计算公式是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
利用平行四边形的对角相等、邻角互补可求得答案.
【详解】
解:因为四边形ABCD是平行四边形,
所以∠B=∠D,∠A+∠B=180°.
因为∠B+∠D=190°,
所以∠B=95°.
所以∠A=180°﹣95°=1°.
故答案为1.
此题考查平行四边形的性质,解题关键在于掌握其性质定理
10、4+4
【解析】
连接EF,点E、F分别是边BC、AD边的中点,可知BE=AF=AB=4,可证四边形ABEF为菱形,根据菱形的性质可知AE⊥BF,且AE与BF互相平分,∠ABC=60°,△ABE为等边三角形,ME=F=4,由勾股定理求MF,根据菱形的性质可证四边形MENF为矩形,再求四边形ENFM的周长.
解:连接EF,
∵点E、F分别是边BC、AD边的中点,
∴BE=AF=AB=4,
又AF∥BE,
∴四边形ABEF为菱形,由菱形的性质,得AE⊥BF,且AE与BF互相平分,
∵∠ABC=60°,∴△ABE为等边三角形,ME=F=4,
在Rt△MEF中,由勾股定理,得MF=,
由菱形的性质,可知四边形MENF为矩形,
∴四边形ENFM的周长=2(ME+MF)=4+4.
故答案为4+4
11、2
【解析】
试题分析:如图,根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S1,S1+S1=S3,
∵正方形A、B、C、D的面积分别为1,5,1,1,
∵最大的正方形E的面积S3=S1+S1=1+5+1+1=2.
12、 (-2,-1)
【解析】
根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.
【详解】
点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),
故答案是:(﹣2,﹣1).
考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.
13、1分米或分米.
【解析】
分2是斜边时和2是直角边时,利用勾股定理列式求出斜边,然后根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
2是斜边时,此直角三角形斜边上的中线长=×2=1分米,
2是直角边时,斜边=,
此直角三角形斜边上的中线长=×分米,
综上所述,此直角三角形斜边上的中线长为1分米或分米.
故答案为1分米或分米.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,难点在于分情况讨论.
三、解答题(本大题共5个小题,共48分)
14、(1)180,;(2)见解析;(3)全校选择景区C的人数是480人.
【解析】
(1)根据D组所对应的圆心角即可求得对应的比例,利用D组的人数除以对应的比例即可求得抽查的总人数,然后根据频率定义求解;
(2)利用总人数减去其它组的人数即可求得C组人数,补全直方图;
(3)利用总人数乘以对应的比例即可求解.
【详解】
解:(1)抽查的人数是42÷=180(人),
选择景区A的学生的频率是:=,
故答案是:180,;
(2)C组的人数是180-36-30-42=72(人);
(3)估计有(人),
答:全校选择景区C的人数是480人.
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
15、(1)EB=FD,(2)EB=FD,证明见解析;(3)不变,等于60°.
【解析】
(1)EB=FD,利用正方形的性质、等边三角形的性质和全等三角形的证明方法可证明△AFD≌△ABE,由全等三角形的性质即可得到EB=FD;
(2)当四边形ABCD为矩形时,EB和FD仍旧相等,证明的思路同(1);
(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD不发生变化,是一定值,为60°.
【详解】
解:(1)EB=FD,
理由如下:
∵四边形ABCD为正方形,
∴AB=AD,
∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,
∴AF=AE,∠FAB=∠EAD=60°,
∵∠FAD=∠BAD+∠FAB=90°+60°=150°,
∠BAE=∠BAD+∠EAD=90°+60°=150°,
∴∠FAD=∠BAE,
在△AFD和△ABE中,
,
∴△AFD≌△ABE,
∴EB=FD;
(2)EB=FD.
证:∵△AFB为等边三角形
∴AF=AB,∠FAB=60°
∵△ADE为等边三角形,
∴AD=AE,∠EAD=60°
∴∠FAB+∠BAD=∠EAD+∠BAD,
即∠FAD=∠BAE
∴△FAD≌△BAE
∴EB=FD;
(3)解:
同(2)易证:△FAD≌△BAE,
∴∠AEB=∠ADF,
设∠AEB为x°,则∠ADF也为x°
于是有∠BED为(60﹣x)°,∠EDF为(60+x)°,
∴∠EGD=180°﹣∠BED﹣∠EDF
=180°﹣(60﹣x)°﹣(60+x)°
=60°.
16、(1)见解析;(2)
【解析】
(1)根据矩形的性质可得AD=BC,AB=DC,AD∥BC,∠BAD=90°,从而得出∠GDB=∠DBC,然后根据折叠的性质可得BC= BC′,∠GBD=∠DBC,从而得出AD= BC′,∠GBD=∠GDB,然后根据等角对等边可得GD=GB,即可证出结论;
(2)设GD=GB=x,利用勾股定理列出方程即可求出GD的长,然后根据三角形的面积公式求面积即可.
【详解】
(1)证明:∵四边形ABCD为矩形
∴AD=BC,AB=DC,AD∥BC,∠BAD=90°
∴∠GDB=∠DBC
由折叠的性质可得BC= BC′,∠GBD=∠DBC
∴AD= BC′,∠GBD=∠GDB
∴GD=GB
∴AD-GD= BC′-GB
∴AG=C′G;
(2)解:设GD=GB=x,则AG=AD-GD=8-x
在Rt△ABG中
即
解得:
即
∴S△BDG=
此题考查的是矩形的性质、折叠的性质、等腰三角形的判定、勾股定理和求三角形的面积,掌握矩形的性质、折叠的性质、等角对等边、利用勾股定理解直角三角形是解决此题的关键.
17、(1)是直角三角形,理由见解析;(2)图见解析;(3)四边形是菱形,理由见解析.
【解析】
(1)先结合网格特点,利用勾股定理求出三边长,再根据勾股定理的逆定理即可得;
(2)先利用平移的性质得到点D,再连接AD即可;
(3)先根据线段中点的定义、等量代换可得,再根据平行四边形的判定可得四边形AECF是平行四边形,然后根据直角三角形的性质可得,最后根据菱形的判定、正方形的判定即可得.
【详解】
(1)是直角三角形,理由如下:
,,
即
是直角三角形;
(2)由平移的性质可知,先将点B向下平移3个单位,再向右平移4个单位可得点C
同样,先将点A向下平移3个单位,再向右平移4个单位可得点D,然后连接AD
则有,且,作图结果如下所示:
(3)四边形是菱形,理由如下:
为中点,为中点
,
,即
四边形是平行四边形
又为中点,是的斜边
平行四边形是菱形
不是等腰直角三角形
与BC不垂直,即
菱形不是正方形
综上,四边形是菱形.
本题考查了作图—平移、勾股定理与勾股定理的逆定理、菱形的判定、正方形的判定等知识点,较难的是题(3),熟练掌握特殊四边形的判定方法是解题关键.
18、
【解析】
先将分式化简,然后代入即可.
【详解】
解:
当x=−1时
原式.
本题主要考查分式方程的化简,熟练分式方程化简步骤是解答此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、128
【解析】
由题意可以知道第一个正方形的边长为1,第二个正方形的边长为 ,第三个正方形的边长为2,就有第n个正方形的边长为(n-1),再根据正方形的面积公式就可以求出结论.
【详解】
第一个正方形的面积为1,故其边长为1=2;
第二个正方形的边长为,其面积为2=2;
第三个正方形的边长为2,其面积为4=2;
第四个正方形的边长为2,其面积为8=2;
…
第n个正方形的边长为(),其面积为2.
当n=8时,
S=2,
=2=128.
故答案为:128.
此题考查正方形的性质,解题关键在于找到规律.
20、
【解析】
先根据两直线平行的问题得到k=2,然后把(1,3)代入y=2x+b中求出b即可.
【详解】
∵直线y=kx+b与y=2x+1平行,
∴k=2,
把(1,3)代入y=2x+b得2+b=3,解得b=1,
∴y=kx+b的表达式是y=2x+1.
故答案为:y=2x+1.
此题考查一次函数中的直线位置关系,解题关键在于求k的值.
21、
【解析】
根据一次函数的增减性可求得k的取值范围.
【详解】
∵一次函数y=(1-k)x+1(k是常数)中y随x的增大而减小,
∴1-k<0,解得k>1,
故答案为:k>1.
本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.
22、
【解析】
首先延长FD到G,使DG=BE,利用正方形的性质得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性质易证△GCF≌△ECF,利用勾股定理可得DF,求出AF,设BE=x,利用GF=EF,解得x,再利用勾股定理可得CE.
【详解】
解:如图,延长FD到G,使DG=BE;
连接CG、EF;
∵四边形ABCD为正方形,
在△BCE与△DCG中,,
∴△BCE≌△DCG(SAS),
∴CG=CE,∠DCG=∠BCE,
∴∠GCF=45°,
在△GCF与△ECF中,,
∴△GCF≌△ECF(SAS),
∴GF=EF,
∵DF=,AB=AD=12,
∴AF=12−4=8,
设BE=x,则AE=12−x,EF=GF=4+x,
在Rt△AEF中,由勾股定理得:(12−x)2+82=(4+x)2,
解得:x=6,
∴BE=6,
∴CE=,
故答案为.
本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是解答此题的关键.
23、
【解析】
由于向量,所以.
【详解】
故答案为:
此题考查向量的基本运算,解题关键在于掌握运算法则即可.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析.
【解析】
(1)利用给出的条件证明即可解答.
(2)先求出,再利用对边平行且相等的判定定理进行证明即可解答.
【详解】
(1)四边形是平行四边形,
,.
.
于,于,
,
,,
(2)四边形是平行四边形,
,
,
,且,
,
,且
四边形是平行四边形
本题考查三角形全等的证明和平行四边形的判定,掌握其证明和判定方法是解题关键.
25、(1)每箱应降价50元,可使每天销售饮料获利14000元.(2)获利不能达到15000元.
【解析】
(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可;
(2)根据题意列出方程,然后用根的判别式去验证.
【详解】
(1)要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,
(120−x)(100+2x)=14000,
整理得x2−70x+1000=0,
解得x1=20,x2=50;
∵为了多销售,增加利润,
∴x=50
答:每箱应降价50元,可使每天销售饮料获利14000元.
(2)由题意得:(120−x)(100+2x)=1500,
整理得x2−70x+1500=0,
∵△=702−4×1500<0
∴方程无解,
∴获利不能达到15000元.
考核知识点:一元二次方程的应用.理解题意,列出方程是关键.
26、(1)当天该水果的销售量为2千克;(2)如果某天销售这种水果获利150元,该天水果的售价为3元.
【解析】
(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;
(2)根据总利润每千克利润销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
【详解】
(1)设y与x之间的函数关系式为y=kx+b,
将(22.6,34.8)、(24,32)代入y=kx+b,
,解得:,
∴y与x之间的函数关系式为y=﹣2x+1.
当x=23.5时,y=﹣2x+1=2.
答:当天该水果的销售量为2千克.
(2)根据题意得:(x﹣20)(﹣2x+1)=150,
解得:x1=35,x2=3.
∵20≤x≤32,
∴x=3.
答:如果某天销售这种水果获利150元,那么该天水果的售价为3元.
本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.
题号
一
二
三
四
五
总分
得分
销售量y(千克)
…
34.8
32
29.6
28
…
售价x(元/千克)
…
22.6
24
25.2
26
…
河南洛阳伊川2024-2025学年数学九上开学考试模拟试题【含答案】: 这是一份河南洛阳伊川2024-2025学年数学九上开学考试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省菏泽数学九上开学考试模拟试题【含答案】: 这是一份2024-2025学年山东省菏泽数学九上开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东广饶县数学九上开学考试模拟试题【含答案】: 这是一份2024-2025学年山东广饶县数学九上开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。