湖南省邵阳市第十一中学2025届数学九年级第一学期开学达标检测试题【含答案】
展开
这是一份湖南省邵阳市第十一中学2025届数学九年级第一学期开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知直线与的交点的横坐标为,根据图象有下列3个结论:①;②;③是不等式 的解集其中正确的个数是( )
A.0,B.1,C.2,D.3
2、(4分)五边形的内角和为( )
A.360°B.540°C.720°D.900°
3、(4分)下列选项中的计算,正确的是( )
A.=±3B.2-=2C.=-5D.
4、(4分)某市居民用电的电价实行阶梯收费,收费标准如下表:
七月份是用电高峰期,李叔计划七月份电费支出不超过200元,则李叔家七月份最多可用电的度数是( ).
A.100B.400C.396D.397
5、(4分)下面关于平行四边形的说法中错误的是( )
A.平行四边形的两条对角线相等
B.平行四边形的两条对角线互相平分
C.平行四边形的对角相等
D.平行四边形的对边相等
6、(4分)下列计算中,正确的是( )
A.=5B.C.=3D.
7、(4分)要使分式有意义,的取值范围为( )
A.B.C.D.且
8、(4分)点(﹣2,﹣3)关于原点的对称点的坐标是( )
A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)27的立方根为 .
10、(4分)将一次函数y=﹣2x﹣1的图象向上平移3个单位,则平移后所得图象的解析式是_____.
11、(4分)函数向右平移1个单位的解析式为__________.
12、(4分)如图,在▱ABCD中,AB=10,BC=6,AC⊥BC,则▱ABCD的面积为_____.
13、(4分)一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,分别表示甲步行与乙骑自行车(在同一条路上)行走的路程、与时间的关系,观察图象并回答下列问题:
(1)乙出发时,乙与甲相距 千米;
(2)走了一段路程后,乙有事耽搁,停下来时间为 小时;
(3)甲从出发起,经过 小时与乙相遇;
(4)甲行走的平均速度是多少千米小时?
15、(8分)某校为了了解学生的安全意识,在全校范围内随机抽取部分学生进行问卷调查.根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图,如图所示:
根据以上信息,解答下列问题:
(1)这次调查一共抽取了______名学生,将条形统计图补充完整;
(2)扇形统计图中,“较强”层次所占圆心角的大小为______°;
(3)若该校有3200名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,请你估计全校需要强化安全教育的学生人数.
16、(8分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:
(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?
(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?
17、(10分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了“二十四节气之旅”项目,并开展了相关知识竞赛.该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查.
收集数据如下:
七年级:
八年级:
整理数据如下:
分析数据如下:
根据以上信息,回答下列问题:
(1)a=______,b=______;
(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);
(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有_____人.
18、(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.
(3)登山多长时间时,甲、乙两人距地面的高度差为50米?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:
(Ⅰ)该地区出租车的起步价是_____元;
(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式_____.
20、(4分)抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是_____.
21、(4分)如图,在矩形中,,过矩形的对角线交点作直线分别交、于点,连接,若是等腰三角形,则____.
22、(4分)如图,点P在第二象限内,且点P在反比例函数图象上,PA⊥x轴于点A,若S△PAO的面积为3,则k的值为 .
23、(4分)对甲、乙两台机床生产的同一种零件进行抽样检测(抽查的零件个数相同),其平均数、方差的计算结果是:机床甲:,;机床乙:,.由此可知:____(填甲或乙)机床性能较好.
二、解答题(本大题共3个小题,共30分)
24、(8分)在▱ABCD中,AB=BC=9,∠BCD=120°.点M从点A出发沿射线AB方向移动.同时点N从点B出发,以相同的速度沿射线BC方向移动,连接AN,CM,直线AN、CM相交于点P.
(1)如图甲,当点M、N分别在边AB、BC上时,
①求证:AN=CM;
②连接MN,当△BMN是直角三角形时,求AM的值.
(2)当M、N分别在边AB、BC的延长线上时,在图乙中画出点P,并直接写出∠CPN的度数.
25、(10分)已知平行四边形ABCD的两边AB、BC的长是关于x的方程x2-mx+-=0的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么平行四边形ABCD的周长是多少?
26、(12分)如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据一次函数的图象和性质可得a>0;b>0;当x>-2时,直线y=3x+b在直线y=ax-2的上方,即x>-2是不等式3x+b>ax-2的解集.
【详解】
解:由图象可知,a>0,故①正确;
b>0,故②错误;
当x>-2,直线y=3x+b在直线y=ax-2的上方,即x>-2是不等式3x+b>ax-2的解集,故③正确.
故选:C.
本题考查了一次函数的图象和性质以及与一元一次不等式的关系,要熟练掌握.
2、B
【解析】
n边形的内角和是(n﹣2)180°,由此即可求出答案.
【详解】
解:五边形的内角和是(5﹣2)×180°=540°.故选B.
本题考查了多边形的内角和,熟练掌握多边形内角和公式是解题的关键.
3、D
【解析】
根据算术平方根的定义,开方运算是求算术平方根,结果是非负数,同类根式相加减, 把同类二次根式的系数相加减, 做为结果的系数, 根号及根号内部都不变.
【详解】
解:A、,不符合题意;
B、,不符合题意;
C、,不符合题意;
D、,符合题意.
故答案为:D
本题考查了算术平方根的计算、二次根式的计算,熟练掌握数的开方、同类二次根式的合并及二次根式商的性质是解题的关键.
4、C
【解析】
先判断出电费是否超过400度,然后根据不等关系:七月份电费支出不超过200元,列不等式计算即可.
【详解】
解:0.48×200+0.53×200
=96+106
=202(元),
故七月份电费支出不超过200元时电费不超过400度,
依题意有0.48×200+0.53(x-200)≤200,
解得x≤1.
答:李叔家七月份最多可用电的度数是1.
故选:C.
本题考查了列一元一次不等式解实际问题的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的不等关系.
5、A
【解析】
∵平行四边形的对边相等、对角相等、对角线互相平分,
∴B、C、D说法正确;
只有矩形的对角线才相等,故A说法错误,
故选A.
6、A
【解析】
根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.
【详解】
解:∵=5,故选项A正确,
∵不能合并,故选项B错误,
∵,故选项C错误,
∵,故选项D错误,
故选:A.
本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.
7、C
【解析】
根据分式有意义的条件可得,再根据二次根式有意义的条件可得,再解即可.
【详解】
由题意得: ,且,
解得: ,
所以,C选项是正确的.
此题主要考查了分式和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数
8、A
【解析】
平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.
【详解】
解:点(﹣2,﹣3)关于原点的对称点的坐标是(2,3),
故选:A.
本题考查关于原点对称的点的坐标特征,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
找到立方等于27的数即可.
解:∵11=27,
∴27的立方根是1,
故答案为1.
考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算
10、y=﹣1x+1
【解析】
根据平移法则上加下减可得出解析式.
【详解】
由题意得:平移后的解析式为:y=﹣1x﹣1+3=﹣1x+1.
故答案为:y=﹣1x+1.
本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.
11、或
【解析】
根据“左加右减,上加下减”的规律即可求得.
【详解】
解:∵抛物线向右平移1个单位
∴抛物线解析式为或.
本题考查的是二次函数,熟练掌握二次函数的平移是解题的关键.
12、1.
【解析】
先在Rt△ABC中利用勾股定理可得AC=2,根据平行四边形面积:底高,可求面积。
【详解】
在Rt△ABC中,AB=10,BC=6,
利用勾股定理可得AC=2.
根据平行四边形面积公式可得平行四边形ABCD面积=BC×AC=6×2=1.
故答案为1.
本题考查了平行四边形的性质及勾股定理,熟知平行四边形的面积公式是解题的关键。
13、4
【解析】
如图所示:
∵四边形ABCD是平行四边形
∵
即两条对角线互相垂直,
∴这个四边形是菱形,
∴
故答案为
三、解答题(本大题共5个小题,共48分)
14、(1)1;(2)1;(3)3;(4)
【解析】
利用一次函数和分段函数的性质,结合图象信息,一一解答即可.
【详解】
解:(1)由图象可知,乙出发时,乙与甲相距1千米.
故答案为:1.
(2))由图象可知,走了一段路程后,乙有事耽搁,停下来的时间为:1.5-0.5=1小时;
故答案为:1.
(3)由图象可知,甲从出发起,经过3小时与乙相遇.
故答案为:3.
(4)甲行走的平均速度是:(22.5-1)÷3=千米/小时.
本题考查一次函数的应用、路程、速度、时间的关系等知识,解题的关键是灵活运用图中信息解决问题,所以中考常考题型.
15、(1)200,t图见解析;(2)108;(3)估计全校需要强化安全教育的学生人数为800人
【解析】
(1)用条形统计图中“一般”层次的人数除以扇形统计图中“一般”层次所占百分比即可求出抽取的人数,然后用总人数减去其它三个层次的人数即得“较强”层次的人数,进而可补全条形统计图;
(2)用“较强”层次的人数除以总人数再乘以360°即可求出结果;
(3)用3200乘以样本中“淡薄”和“一般”层次所占的百分比即可.
【详解】
解:(1)30÷15%=200,所以这次调查一共抽取了200名学生;
较强层次的人数为200-20-30-90=60(人),条形统计图补充为:
故答案为:200;
(2)扇形统计图中,“较强”层次所占圆心角=360°×=108°;
故答案为:108;
(3)3200×=800,所以估计全校需要强化安全教育的学生人数为800人.
本题考查了条形统计图和扇形统计图以及利用样本估计总体的思想,属于常考题型,正确理解题意、读懂统计图提供的信息、弄清二者的联系是解题的关键.
16、(1)250;(2)甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利: 254元.
【解析】
试题分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;
(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果乙店盈利×x;列出函数解析式利用函数性质求得答案即可.
解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;
(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,
乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.
∵9×(10﹣x)+13x≥100,
∴x≥2,
经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+1.
∵﹣2<0,
∴w随x增大而减小,
∴当x=3时,w值最大.
甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+1=254(元).
17、 (1)8,88.1; (2)你认为 八 年级知识竞赛的总体成绩较好,理由1:理由2:见解析;或者你认为 七 年级知识竞赛的总体成绩较好,理由1: 理由2: 见解析; (答案不唯一,合理即可);(3)460.
【解析】
(1)从调查的七年级的人数20减去前几组的人数即可,将八年级的20名学生的成绩排序后找到第10、11个数的平均数即是八年级的中位数,
(2)从中位数、众数、方差进行分析,调查结论,
(3)用各个年级的总人数乘以样本中优秀人数所占的比即可.
【详解】
(1) a=20-1-10-1=8,b=(88+89)÷2=88.1
故答案为:8,88.1.
(2)你认为 八 年级知识竞赛的总体成绩较好
理由1:八年级成绩的中位数较高;
理由2:八年级与七年级成绩的平均数接近且八年级方差较低,成绩更稳定.
或者
你认为 七 年级知识竞赛的总体成绩较好,
理由1:七年级的平均成绩较高;
理由2:低分段人数较少。 (答案不唯一,合理即可)
(3) 七年级优秀人数为:400×=180人,八年级优秀人数为:400×=280人,
180+280=460人.
考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.
18、(1)10;1;(2);(3)4分钟、9分钟或3分钟.
【解析】
(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;
(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;
(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.
【详解】
(1)(10-100)÷20=10(米/分钟),
b=3÷1×2=1.
故答案为:10;1.
(2)当0≤x≤2时,y=3x;
当x≥2时,y=1+10×3(x-2)=1x-1.
当y=1x-1=10时,x=2.
∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为.
(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).
当10x+100-(1x-1)=50时,解得:x=4;
当1x-1-(10x+100)=50时,解得:x=9;
当10-(10x+100)=50时,解得:x=3.
答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米.
本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、8 y=1x+1.
【解析】
(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,
(Ⅱ)利用待定系数法求出一次函数解析式即可.
【详解】
(Ⅰ)该城市出租车3千米内收费8元,
即该地区出租车的起步价是8元;
(Ⅱ)依题意设y与x的函数关系为y=kx+b,
∵x=3时,y=8,x=8时,y=18;
∴,
解得;
所以所求函数关系式为:y=1x+1(x>3).
故答案为:8;y=1x+1.
此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.
20、
【解析】
由题意知共有6种等可能结果,朝上一面的点数不小于3的有4种结果,利用概率公式计算可得.
【详解】
解:∵抛掷一枚质地均匀的骰子1次共有6种等可能结果,朝上一面的点数不小于3的有4种结果,
所以朝上一面的点数不小于3的概率是=,
故答案为:.
此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.
21、或
【解析】
连接AC,由矩形的性质得出∠B=90°,AD=BC=6,OA=OC,AD∥BC,由ASA证明△AOE≌△COF,得出AE=CF,若△AEF是等腰三角形,分三种情讨论:
①当AE=AF时,设AE=AF=CF=x,则BF=6-x,在Rt△ABF中,由勾股定理得出方程,解方程即可;
②当AF=EF时,作FG⊥AE于G,则AG=AE=BF,设AE=CF=x,则BF=6-x,AG=x,得出方程x=6-x,解方程即可;
③当AE=FE时,作EH⊥BC于H,设AE=FE=CF=x,则BF=6-x,CH=DE=6-x,求出FH=CF-CH=2x-6,在Rt△EFH中,由勾股定理得出方程,方程无解;即可得出答案.
【详解】
解:连接AC,如图1所示:
∵四边形ABCD是矩形,
∴∠B=90°,AD=BC=6,OA=OC,AD∥BC,
∴∠OAE=∠OCF,
在△AOE和△COF中,
,
∴△AOE≌△COF(ASA),
∴AE=CF,若△AEF是等腰三角形,分三种情讨论:
①当AE=AF时,如图1所示:
设AE=AF=CF=x,则BF=6-x,
在Rt△ABF中,由勾股定理得:12+(6-x)2=x2,
解得:x=,
即AE=;
②当AF=EF时,
作FG⊥AE于G,如图2所示:
则AG=AE=BF,
设AE=CF=x,则BF=6-x,AG=x,
所以x=6-x,
解得:x=1;
③当AE=FE时,作EH⊥BC于H,如图3所示:
设AE=FE=CF=x,则BF=6-x,CH=DE=6-x,
∴FH=CF-CH=x-(6-x)=2x-6,
在Rt△EFH中,由勾股定理得:12+(2x-6)2=x2,
整理得:3x2-21x+52=0,
∵△=(-21)2-1×3×52<0,
∴此方程无解;
综上所述:△AEF是等腰三角形,则AE为或1;
故答案为:或1.
本题考查了矩形的性质、全等三角形的判定与性质、勾股定理、解方程、等腰三角形的性质、分类讨论等知识;根据勾股定理得出方程是解决问题的关键,注意分类讨论.
22、-6
【解析】
由△PAO的面积为3可得=3,再结合图象经过的是第二象限,从而可以确定k值;
【详解】
解:∵S△PAO=3,
∴=3,
∴|k|=6,
∵图象经过第二象限,
∴k
相关试卷
这是一份湖南省邵阳市双清区第十一中学2024-2025学年数学九年级第一学期开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖南省澧县张公庙中学2024年数学九年级第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河北省邯郸市第十一中学2025届数学九年级第一学期开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。