湖北省宜昌市外国语初级中学2025届数学九上开学联考试题【含答案】
展开
这是一份湖北省宜昌市外国语初级中学2025届数学九上开学联考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一次函数y=kx+b的图象如图所示,则关于x的不等式的解集为
A.B.C.D.
2、(4分)如果,为有理数,那么( )
A.3B.C.2D.﹣2
3、(4分)若代数式有意义,则实数x的取值范围是( )
A.x=0B.x=3C.x≠0D.x≠3
4、(4分)函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是( )
A.B.
C.D.
5、(4分)一个多边形的内角和是1800°,则这个多边形是( )边形.
A.9B.10C.11D.12
6、(4分)在函数中的取值范围是( )
A.B.C.D.
7、(4分)如图,有一张长方形纸片,其中,.将纸片沿折叠,,若,折叠后重叠部分的面积为( )
A.B.C.D.
8、(4分)在式子,,,中,x可以取1和2的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)下表记录了某校4名同学游泳选拨赛成绩的平均数与方差:
根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择__________.
10、(4分)方程的解为:___________.
11、(4分)某商品经过两次连续的降价,由原来的每件250元降为每件160元,则该商品平均每次降价的百分率为____________.
12、(4分)方程的解是_______.
13、(4分)如图,已知矩形ABCD中,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=______
三、解答题(本大题共5个小题,共48分)
14、(12分)《九章算术》“勾股”章有一题:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”译文为:一根竹子,原来高一丈,虫伤之后,一阵风将竹子折断,其竹梢恰好抵地,抵地处与原竹子底部距离三尺,问原处还有多高的竹子?
请解答上述问题.
15、(8分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.
16、(8分)如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则CE= .
17、(10分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:
假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3 ∶3 ∶4 ,通过计算说明谁应当选为优秀学生干部。
18、(10分)如图,在平面直角坐标系中,已知点A(-3,0),B(0,-1),C(0,)三点.
(1)求直线AB的解析式.
(2)若点D在直线AB上,且DB=DC,尺规作图作出点D(保留作图痕迹),并求出点D的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)2x-3>- 5的解集是_________.
20、(4分)如图,已知线段,是直线上一动点,点,分别为,的中点,对下列各值:①线段的长;②的周长;③的面积;④直线,之间的距离;⑤的大小.其中不会随点的移动而改变的是_____.(填序号)
21、(4分)已知是分式方程的根,那么实数的值是__________.
22、(4分)某商店销售型和型两种电脑,其中型电脑每台的利润为400元,型电脑每台的利润为500元,该商店计划一次性购进两种型号的电脑共100台,设购进型电脑台,这100台电脑的销售总利润为元,则关于的函数解析式是____________.
23、(4分)的倒数是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:,并把解集在数轴上表示出来.
25、(10分) “西瓜足解渴,割裂青瑶肤”,西瓜为夏季之水果,果肉味甜,能降温去暑;种子含油,可作消遣食品;果皮药用,有清热、利尿、降血压之效.某西瓜批发商打算购进“黑美人”西瓜与“无籽”西瓜两个品种的西瓜共70000千克.
(1)若购进“黑美人”西瓜的重量不超过“无籽”西瓜重量的倍,求“黑美人”西瓜最多购进多少千克?
(2)该批发商按(1)中“黑美人”西瓜最多重量购进,预计“黑美人”西瓜售价为4元/千克;“无籽”西瓜售价为5元/千克,两种西瓜全部售完.由于存储条件的影响,“黑美人”西瓜与“无籽”西瓜分别有与的损坏而不能售出.天气逐渐炎热,西瓜热卖,“黑美人”西瓜的销售价格上涨,“无籽”西瓜的销售价格上涨,结果售完之后所得的总销售额比原计划下降了3000元,求的值.
26、(12分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:∵一次函数y=kx+b经过点(3,0),
∴3k+b=0,
∴b=-3k.
将b=-3k代入k(x-4)-1b>0,
得k(x-4)-1×(-3k)>0,
去括号得:kx-4k+6k>0,
移项、合并同类项得:kx>-1k;
∵函数值y随x的增大而减小,
∴k<0;
将不等式两边同时除以k,得x<-1.
故选B.
考点:一次函数与一元一次不等式.
2、A
【解析】
直接利用完全平方公式化简进而得出a,b的值求出答案即可.
【详解】
解:∵=a+b,
∵a,b为有理数,
∴a=7,b=4,
∴a-b=7-4=1.
故选:A.
此题主要考查了实数运算,正确应用完全平方公式是解题关键.
3、D
【解析】
分析:根据分式有意义的条件进行求解即可.
详解:由题意得,x﹣3≠0,
解得,x≠3,
故选D.
点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.
4、C
【解析】
根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.
【详解】
解:分四种情况:
①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;
②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;
③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,C选项符合;
④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.
故选C.
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
5、D
【解析】
根据n边形的内角和是(n﹣2)×180 ,根据多边形的内角和为1800 ,就得到一个关于n的方程,从而求出边数.
【详解】
根据题意得:(n﹣2)×180=1800,
解得:n=1.
故选:D.
此题主要考查多边形的内角和,解题的关键是熟知n边形的内角和是(n﹣2)×180 .
6、C
【解析】
根据分母不等于0列式计算即可得解.
【详解】
根据题意得,,
解得.
故选C.
本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
7、B
【解析】
根据折叠的性质,可知折叠后重叠部分的面积等于长方形ABCD的面积减去长方形AEFD的面积,即可得解.
【详解】
根据题意,得折叠后重叠部分的面积等于长方形ABCD的面积减去长方形AEFD的面积,
∵,,
∴
故答案为B.
此题主要考查折叠的性质和长方形的面积求解,熟练掌握,即可解题.
8、C
【解析】
根据分式和二次根式成立的条件逐个式子分析即可.
【详解】
A.有意义时x≠1,不能取1,故不符合题意;
B.有意义时x≠2,不能取2,故不符合题意;
C.有意义时x≥1,以取1和2,故符合题意;
D.有意义时x≥2,不能取1,故不符合题意;
故选C.
本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于零,二次根式有意义的条件是被开方式大于且等于零.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、队员1
【解析】
根据方差的意义结合平均数可作出判断.
【详解】
因为队员1和1的方差最小,队员1平均数最小,所以成绩好,
所以队员1成绩好又发挥稳定.
故答案为:队员1.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
10、,
【解析】
根据解一元二次方程的方法,即可得到答案.
【详解】
解:∵,
∴,
∴,,
故答案为:,;
本题考查了解一元二次方程的方法,解题的关键是掌握解方程的方法和步骤.
11、20%
【解析】
设平均每次降价的百分率为x,则第一次降价后的单价是原来的(1-x),第二次降价后的单价是原来的(1-x)2,根据题意列方程求解即可.
【详解】
设平均每次降价的百分率为x,根据题意列方程得
250×(1-x)2=160,
解得x1=0.2,2,x2=1.8(不符合题意,舍去),
即该商品平均每次降价的百分率为20%,
故答案为:20%.
本题考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.
12、
【解析】
观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
【详解】
解:两边同时乘以得,
,
解得,,
检验:当时,,不是原分式方程的解;
当时,,是原分式方程的解.
故答案为:.
本题考查了解分式方程:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
13、4.8.
【解析】
矩形各内角为直角,在直角△ABD中,已知AB、AD,根据勾股定理即可求BD的值,根据面积法即可计算AE的长.
【详解】
矩形各内角为直角,∴△ABD为直角三角形
在直角△ABD中,AB=6,AD=8
则BD= =10,
∵△ABD的面积S=AB⋅AD=BD⋅AE,
∴AE= =4.8.
故答案为4.8.
此题考查矩形的性质,解题关键在于运用勾股定理进行计算
三、解答题(本大题共5个小题,共48分)
14、原处还有4.55尺高的竹子.
【解析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面尺,则斜边为尺.利用勾股定理解题即可.
【详解】
解:设竹子折断处离地面尺,则斜边为尺,
根据勾股定理得:
解得:.
答:原处还有4.55尺高的竹子.
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
15、见解析
【解析】
根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,且AD=BC,
∴AF∥EC,
∵BE=DF,
∴AF=EC,
∴四边形AECF是平行四边形,
∴AE=CF.
本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.
16、(1)见解析;(2)1.
【解析】
根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.
【详解】
(1)如图所示:E点即为所求.
(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,
∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.
考点:作图—复杂作图;平行四边形的性质
17、平均数分别为26.2 ,25.8 ,25.4 ,班长应当选.
【解析】
根据思想表现、学习成绩、工作能力这三方面的不同权重,分别计算三人的加权平均分即可.
【详解】
解:根据思想表现、学习成绩、工作能力这三方面的重要比为3 ∶3 ∶4,可得思想表现、学习成绩、工作能力这三方面的权重分别是0.3 ,0.3,0.4;
则班长的最终成绩为:;
学习委员的最终成绩为:;
团支部书记的最终成绩为:;
∵26.2 >25.8 >25.4
∴班长的最终成绩最高,
∴班长当选.
故答案为:平均数分别为26.2 ,25.8 ,25.4 ,班长应当选.
本题考查加权平均数的计算,比较简单,熟记加权平均数的计算方法是解题关键.
18、(1)y=x-1;(2)画图见解析,点D的坐标为(,).
【解析】
(1)设直线AB解析式为:y=kx+b,把A,B坐标代入,求解即可;
(2)按照题目要求画图即可,根据题意可得点D在线段BC垂直平分线上,据此可求出D点坐标.
【详解】
(1)设直线AB解析式为:y=kx+b,
代入点A(-3,0),B(0,-1),
得:,
解得,
∴直线AB解析式为:y=x-1;
(2)如图所示:
∵B(0,-1),C(0,),DB=DC,
∴点D在线段BC垂直平分线上,
∴D的纵坐标为,
又∵点D在直线AB上,
令y=,得x=,
∴点D的坐标为(,).
本题考查了用待定系数法求一次函数解析式,尺规作图,垂直平分线的性质,掌握知识点是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x>-1.
【解析】
先移项,再合并同类项,化系数为1即可.
【详解】
移项得,2x>-5+3,
合并同类项得,2x>-2,
化系数为1得,x>-1.
故答案为:x>-1.
本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.
20、①③④
【解析】
根据中位线的性质,对线段长度、三角形周长和面积、角的变化情况进行判断即可.
【详解】
点,为定点,点,分别为,的中点,
是的中位线,
,
即线段的长度不变,故①符合题意,
、的长度随点的移动而变化,
的周长会随点的移动而变化,故②不符合题意;
的长度不变,点到的距离等于与的距离的一半,
的面积不变,故③符合题意;
直线,之间的距离不随点的移动而变化,故④符合题意;
的大小点的移动而变化,故⑤不符合题意.
综上所述,不会随点的移动而改变的是:①③④.
故答案为:①③④.
本题考查了三角形的动点问题,掌握中位线的性质、线段长度的性质、三角形周长和面积的性质、角的性质是解题的关键.
21、1
【解析】
将代入到方程中即可求出m的值.
【详解】
解:将代入,得
解得:
故答案为:1.
此题考查的是根据分式方程的根求分式方程中的参数,掌握分式方程根的定义是解决此题的关键.
22、
【解析】
根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式.
【详解】
解:根据题意,
y=400x+500(100-x)=-100x+50000;
故答案为
本题主要考查了一次函数的应用,解题的关键是根据总利润与销售数量的数量关系列出关系式.
23、
【解析】
分析:根据倒数的意义或二次根式的化简进行计算即可.
详解:因为×=1
所以的倒数为.
故答案为.
分析:此题主要考查了求一个数的倒数,关键是明确倒数的意义,乘积为1的两数互为倒数.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
解不等式,得:,
解不等式,得:,
将不等式的解集表示在数轴上如下:
则不等式组的解集为,
本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.
25、(1)最多(2)
【解析】
(1)设购进“黑美人”西瓜千克,则购进“无籽”西瓜千克,根据购进“黑美人”西瓜的重量不超过“无籽”西瓜重量的倍,即可得出关于的一元一次不等式,解之取其最大值即可得出结论; (2)根据总价=单价×数量,即可得出关于的一元二次方程,解之取其正值即可得出结论.
【详解】
解:(1)设购进“黑美人”西瓜千克,则购进“无籽”西瓜千克, 依题意,得:,
解得:.
答:“黑美人”西瓜最多购进40000千克.
(2)由题意得: ,
整理,得:,
解得:(舍去).
答:的值为1.
本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.
26、(1)BE=DF;(2)四边形BC1DA是菱形.
【解析】
(1)由AB=BC得到∠A=∠C,再根据旋转的性质得AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,则可证明△ABE≌△C1BF,于是得到BE=BF
(2)根据等腰三角形的性质得∠A=∠C=30°,利用旋转的性质得∠A1=∠C1=30°,∠ABA1=∠CBC1=30°,则利用平行线的判定方法得到A1C1∥AB,AC∥BC1,于是可判断四边形BC1DA是平行四边形,然后加上AB=BC1可判断四边形BC1DA是菱形.
【详解】
(1)解:BE=DF.理由如下:
∵AB=BC,
∴∠A=∠C,
∵△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,
∴AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,
在△ABE和△C1BF中
,
∴△ABE≌△C1BF,
∴BE=BF
(2)解:四边形BC1DA是菱形.理由如下:
∵AB=BC=2,∠ABC=120°,
∴∠A=∠C=30°,
∴∠A1=∠C1=30°,
∵∠ABA1=∠CBC1=30°,
∴∠ABA1=∠A1,∠CBC1=∠C,
∴A1C1∥AB,AC∥BC1,
∴四边形BC1DA是平行四边形.
又∵AB=BC1,
∴四边形BC1DA是菱形
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的判定方法.
题号
一
二
三
四
五
总分
得分
队员1
队员2
队员3
队员4
平均数(秒)
51
50
51
50
方差(秒)
3.5
3.5
14.5
15.5
相关试卷
这是一份湖北省宜昌市夷陵区2024年数学九上开学检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省宜昌市外国语初级中学2025届数学九上开学联考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省宜昌市名校2024-2025学年九上数学开学调研模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。