


湖北省襄州区2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开
这是一份湖北省襄州区2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列计算正确的是( )
A.B.
C.D.
2、(4分)如图,在△ABC中,∠A=∠B= 45,AB=4.以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为( )
A.2B.4C.8D.16
3、(4分)下列命题中,真命题是( )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线互相垂直平分的四边形是正方形
4、(4分)如图,在菱形中,,的垂直平分线交对角线于点,为垂足,连结,则等于( )
A.B.C.D.
5、(4分)已知菱形的面积为10,对角线的长分别为x和y,则y关于x的函数图象是
A.B.C.D.
6、(4分)一艘轮船和一艘快艇沿相同路线从甲港岀发匀速行驶至乙港,行驶路程随时间变化的图象如图,则下列结论错误的是( )
A.轮船的速度为20千米时B.轮船比快艇先出发2小时
C.快艇到达乙港用了6小时D.快艇的速度为40千米时
7、(4分)如图,一个运算程序,若需要经过两次运算才能输出结果,则的取值范围为
A.B.C.D.
8、(4分)如图,在中,,垂直平分于点,交于点,则为( )
A.30°B.25°C.20°D.15°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是_____cm.
10、(4分)已知a+b=3,ab=﹣4,则a2b+ab2的值为_____.
11、(4分)一次函数y=kx+2(k≠0)的图象与x轴交于点A(n,0),当n>0时,k的取值范围是_____.
12、(4分)如图,在中,已知,,平分,交边于点E,则 ___________ .
13、(4分)请写出一个图形经过一、三象限的正比例函数的解析式 .
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组并求出其整数解
15、(8分)已知,在平行四边形ABCD中,E为AD上一点,且AB=AE,连接BE交AC于点H,过点A作AF⊥BC于F,交BE于点G.
(1)若∠D=50°,求∠EBC的度数;
(2)若AC⊥CD,过点G作GM∥BC交AC于点M,求证:AH=MC.
16、(8分)计算题:
(1); (2).
17、(10分)已知三个实数x,y,z满足,求的值.
18、(10分)图1,抛物线与x轴交于A(﹣1,0),B(3,0),顶点为D(1,﹣4),点P为y轴上一动点.
(1)求抛物线的解析式;
(2)在y轴的负半轴上是否存在点P,使△BDP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
(3)如图2,点在抛物线上,求的最小值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某市出租车白天的收费起步价为10元,即路程不超过时收费10元,超过部分每千米收费2元,如果乘客白天乘坐出租车的路程为 ,乘车费为元,那么与之间的关系式为__________________.
20、(4分)已知:正方形,为平面内任意一点,连接,将线段绕点顺时针旋转得到,当点,,在一条直线时,若,,则________.
21、(4分)如图,在中,,,是的角平分线,过点作于点,若,则___.
22、(4分)若有增根,则m=______
23、(4分)将函数的图象向上平移2个单位,所得的函数图象的解析为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1所示,在中,为边上一点,将沿折叠至处,与交于点.若,,则的大小为_______.
提出命题:如图2,在四边形中,,,求证:四边形是平行四边形.
小明提供了如下解答过程:
证明:连接.
∵,,,
∴.
∵,
∴,.
∴,.
∴四边形是平行四边形(两组对边分别平行的四边形是平行四边形).
反思交流:(1)请问小明的解法正确吗?如果有错,说明错在何处,并给出正确的证明过程.
(2)用语言叙述上述命题:______________________________________________.
运用探究:(3)下列条件中,能确定四边形是平行四边形的是( )
A.
B.
C.
D.
25、(10分)长方形放置在如图所示的平面直角坐标系中,点轴,轴,.
(1)分别写出点的坐标______;______;________.
(2)在轴上是否存在点,使三角形的面积为长方形ABCD面积的?若存在,请直接写出点的坐标;若不存在,请说明理由.
26、(12分)随着信息技术的高速发展,计算机技术已是每位学生应该掌握的基本技能.为了提高学生对计算机的兴趣,老师把甲、乙两组各有10名学生,进行电脑汉字输入速度比赛,各组参赛学生每分钟输入汉字个数统计如下表:
(1)请你填写下表中甲班同学的相关数据.
(2)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?
(3)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据分式的计算法则,依次计算各选项后即可进行判断.
【详解】
A选项:,故计算错误;
B选项:,故计算错误;
C选项:,故计算错误;
D选项:,故计算正确;
故选:D.
查了分式的加、减、乘、除运算,解题关键是熟记其运算法则.
2、C
【解析】
试题解析:
3、C
【解析】
试题分析:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;
B、对角线互相垂直的平行四边形是菱形;故本选项错误;
C、对角线互相平分的四边形是平行四边形;故本选项正确;
D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.
故选C.
4、D
【解析】
连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.
【详解】
解:如图,连接BF,
在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,
∠ABC=180°-∠BAD=180°-80°=100°,
∵EF是线段AB的垂直平分线, ∴AF=BF,∠ABF=∠BAC=40°,
∴∠CBF=∠ABC-∠ABF=100°-40°=60°,
∵在△BCF和△DCF中,
,
∴△BCF≌△DCF(SAS),
∴∠CDF=∠CBF=60°,
故选:D.
本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.
5、D
【解析】
根据菱形的面积列出等式后即可求出y关于x的函数式.
【详解】
由题意可知:10=xy,
∴y=(x>0),
故选:D.
本题考查反比例函数,解题的关键是熟练运用菱形的面积公式,本题属于基础题型.
6、C
【解析】
观察图象可知,该函数图象表示的是路程与时间的函数关系,依据图象中的数据进行计算即可。
【详解】
A.轮船的速度为=20千米时,故本选项正确;
B.轮船比快艇先出发2小时,故本选项正确;
C.快艇到达乙港用了6-2=4小时,故本选项错误;
D.快艇的速度为=40千米时,故本选项正确;
故选:C.
本题考查了一次函数图象的运用、行程问题的数量关系的运用,解题时分析函数图象提供的信息是关键。
7、C
【解析】
输入x,需要经过两次运算才能输出结果,说明第一次运算的结果为:5x+2<37,经过第二次运算5(5x+2)+2≥37,两个不等式联立成为不等式组,解之即可.
【详解】
解:根据题意得:
,
解得:1≤x<7,
即x的取值范围为:1≤x<7,
故选C.
本题考查一元一次不等式组的应用,正确找出等量关系,列出一元一次不等式组是解题的关键.
8、D
【解析】
连接BD,根据线段垂直平分线的性质可以证明△ABD是等腰三角形,在直角△BCD中根据30°角所对的直角边等于斜边的一半求出∠BDC的度数,然后利用三角形的外角的性质即可求解.
【详解】
连接BD,
∵DE垂直平分AB于E,
∴AD=BD=2BC,
∴
∵
∴∠BDC=30°,
又∵BD=DA,
∴.
故选D.
本题考查了线段的垂直平分线的性质以及等腰三角形的性质,正确求得∠BDC的度数是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8
【解析】
先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.
【详解】
(),
由勾股定理得(),
则玻璃棒露在容器外的长度的最小值是().
故答案为.
考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.
10、﹣1
【解析】
直接提取公因式ab,进而将已知代入求出即可.
【详解】
∵a+b=3,ab=-3,
∴a2b+ab2=ab(a+b)=4×(-3)=-1.
故答案为-1
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
11、k<1
【解析】
分析:根据题意可以用含k的式子表示n,从而可以得出k的取值范围.
详解:∵一次函数y=kx+2(k≠1)的图象与x轴交于点A(n,1),
∴n=﹣,
∴当n>1时,﹣>1,
解得,k<1,
故答案为k<1.
点睛:本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
12、1
【解析】
由和平分,可证,从而可知为等腰三角形,则,由,,即可求出.
【详解】
解:中,AD//BC,
平分
故答案为1.
本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
13、y=x(答案不唯一)
【解析】
试题分析:设此正比例函数的解析式为y=kx(k≠1),
∵此正比例函数的图象经过一、三象限,∴k>1.
∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).
三、解答题(本大题共5个小题,共48分)
14、;其整数解为大于的所有整数.
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解不等式,得:,
解不等式,得:,
则不等式的解集为,
不等式的整数解为大于的所有整数.
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
15、(1)∠EBC=25°;(2)见解析;
【解析】
(1)根据等边对等角以及平行线的性质,即可得到∠1=∠2=∠ABC,再根据平行四边形ABCD中,∠D=50°=∠ABC,可得出∠EBC的度数;
(2)过M作MN⊥BC于N,过G作GP⊥AB于P,则∠CNM=∠APG=90°,先根据AAS判定△BPG≌△BFG,得到PG=GF,根据矩形GFNM中GF=MN,即可得出PG=NM,进而判定△PAG≌△NCM(AAS),可得AG=CM,再根据等角对等边得到AH=AG,即可得到结论.
【详解】
(1)∵AB=AE,
∴∠1=∠3,
∵AE∥BC,
∴∠2=∠3,
∴∠1=∠2=∠ABC,
又∵平行四边形ABCD中,∠D=50°,
∴∠ABC=50°,
∴∠EBC=25°;
(2)证明:如图,过M作MN⊥BC于N,过G作GP⊥AB于P,则∠CNM=∠APG=90°,
由(1)可得,∠1=∠2,
∵AF⊥BC,
∴∠BPG=∠BFG=90°,
在△BPG和△BFG中,
,
∴△BPG≌△BFG(AAS),
∴PG=GF,
又∵矩形GFNM中,GF=MN,
∴PG=NM,
∵AC⊥CD,CD∥AB,
∴∠BAC=90°=∠AFB,
即∠PAG+∠ABF=∠NCM+∠ABC=90°,
∴∠PAG=∠NCM,
在△PAG和△NCM中,
,
∴△PAG≌△NCM(AAS),
∴AG=CM,
∵∠1=∠2,∠BAH=∠BFG,
∴∠AHG=∠FGB=∠AGH,
∴AG=AH,
∴AH=MC.
此题考查全等三角形的判定与性质,平行四边形的性质,解题关键在于掌握判定定理和作辅助线.
16、 (1) ;(2) 1.
【解析】
分析:(1)先把各二次根式化为最简二次根式,然后合并即可;
(2)利用平方差公式计算.
详解:(1)原式=3-2 =;
(2)原式=3-(5-3)=1.
点睛:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.
17、4
【解析】
求得到,然后求出,分子分母同除以xyz得,即可求解。
【详解】
解:∵
∴
∴
分子分母同除以xyz得=4
本题考查了条件代数式求值问题,关键在于观察条件和所求代数式直接的联系;本题的联系在于倒数的应用和分式基本性质的应用。
18、(1)y=x1﹣1x﹣3;(1)点P坐标为(0,﹣)或(0,﹣﹣4)或(0,﹣1);(3)
【解析】
(1)由已知抛物线顶点坐标为D,设抛物线的解析式为y=a(x﹣1)1﹣4,再把点A代入即可求得二次项系数a的值,由此即可求得抛物线的解析式;(1)由点B、D坐标可求BD的长.设点P坐标为(0,t),用t表示BP1,DP1.对BP=BD、DP=BD、BP=DP三种情况进行分类讨论计算,解方程求得t的值并讨论是否合理即可;(3)由点B、C坐标可得∠BCO=45°,所以过点P作BC垂线段PQ即构造出等腰直角△PQC,可得PQ=PC,故有MP+PC=MP+PQ.过点M作BC的垂线段MH,根据垂线段最短性质,可知当点M、P、Q在同一直线上时,MP+PC=MP+PQ=MH最小,即需求MH的长.连接MB、MC构造△BCM,利用y轴分成△BCD与△CDM求面积和即得到△BCM面积,再由S△BCM=BC•MH即求得MH的长.
【详解】
解:(1)∵抛物线顶点为D(1,﹣4),
∴设抛物线的解析式为y=a(x﹣1)1﹣4,
∵A(﹣1,0)在抛物线上
∴4a﹣4=0,解得:a=1
∴抛物线的解析式为y=(x﹣1)1﹣4=x1﹣1x﹣3
(1)在y轴的负半轴上存在点P,使△BDP是等腰三角形.
∵B(3,0),D(1,﹣4)
∴BD1=(3﹣1)1+(0+4)1=10
设y轴负半轴的点P坐标为(0,t)(t<0)
∴BP1=31+t1,DP1=11+(t+4)1
①若BP=BD,则9+t1=10
解得:t1=(舍去),t1=﹣
②若DP=BD,则1+(t+4)1=10
解得:t1=-4(舍去),t1=﹣﹣4
③若BP=DP,则9+t1=1+(t+4)1
解得:t=﹣1
综上所述,点P坐标为(0,﹣)或(0,﹣﹣4)或(0,﹣1)
(3)连接MC、MB,MB交y轴于点D,过点P作PQ⊥BC于点Q,过点M作MH⊥BC于点H
∵x=0时,y=x1﹣1x﹣3=﹣3;
∴C(0,﹣3);
∵B(3,0),∠BOC=90°;
∴∠OBC=∠OCB=45°,BC=3
∵∠PQC=90°
∴Rt△PQC中,sin∠BCO==
∴PQ=PC,
∴MP+PC=MP+PQ;
∵MH⊥BC于点H,
∴当点M、P、Q在同一直线上时,MP+PC=MP+PQ=MH最小,
∵M(﹣,m)在抛物线上
∴m=(﹣)1﹣1×(﹣)﹣3=
∴M(﹣,)
设直线MB解析式为y=kx+b
∴,
解得: ,
∴直线MB:y=﹣x+,
∴MB与y轴交点D(0,),
∴CD=﹣(﹣3)=,
∴S△BCM=S△BCD+S△CDM=CD•BO+CD•|xM|=CD•(xB﹣xM)=××(3+)=,
∵S△BCM=BC•MH,
∴MH==,
∴MP+PC的最小值为.
本题是二次函数的综合题,考查了待定系数法求解析式,等腰三角形的性质,三角形面积的求法等,解决第(1)问时要注意分类讨论,不要漏解;解决第(3)问时,确定当点M、P、Q在同一直线上时,MP+PC最小是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据乘车费用=起步价+超过3千米的付费得出.
【详解】
解:依题意有:y=10+2(x-3)=2x+1.
故答案为:y=2x+1.
根据题意,找到所求量的等量关系是解决问题的关键.本题乘车费用=起步价+超过3千米的付费
20、或
【解析】
分两种情况讨论:
(1)当点G在线段BD上时,如下图连接EG交CD于F;(2)当点G在线段BD的延长线上时,如下图连接EG交CD的延长线于F.根据两种情况分别画出图形,证得是等腰直角三角形,求出DF=EF=2,然后在直角三角形ECF中利用勾股定理即可求出CE的长.
【详解】
解:分两种情况讨论:
(1)当点G在线段BD上时,如下图连接EG交CD于F
∵ABCD是正方形
∴CD=AD=4
∵线段绕点顺时针旋转得到
∴是等腰直角三角形,DE=DG=
∴DF=EF=2
∴CF=CD-DF=4-2=2
∴CE=
(2)当点G在线段BD的延长线上时,如下图连接EG交CD的延长线于F
∵ABCD是正方形
∴CD=AD=4
∵线段绕点顺时针旋转得到
∴是等腰直角三角形,DE=DG=
∴DF=EF=2
∴CF=CD+DF=4+2=6
∴CE=
综上所述,CE的长为或
本题考查了正方形的性质、旋转的性质及等腰直角三角形的性质,通过旋转证得是等腰直角三角形进行有关的计算是解题的关键.
21、
【解析】
根据角平分线上的点到角的两边距离相等可得DE=CD,再利用勾股定理列式计算即可得解.
【详解】
∵∠ACB=90°,CA=CB,
∴∠B=45°,
∵AD平分∠CAB,∠ACB=90°,DE⊥AB,
∴DE=CD=1,∠BDE=45°,
∴BE=DE=1,
在Rt△BDE中,根据勾股定理得,BD=.
故答案为:.
本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,熟记性质是解题的关键.
22、-1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.
【详解】
方程两边都乘(x-3),得
x-1(x-3)=1-m,
∵方程有增根,
∴最简公分母x-3=0,即增根是x=3,
把x=3代入整式方程,得m=-1.
故答案是:-1.
解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
23、
【解析】
根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为.
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)两组对角分别相等的四边形是平行四边形;(3)B
【解析】
由折叠的性质得∠DAE=D′AE=20°,∠DEA=∠D′EA,由三角形外角的性质得∠AEC=∠DAE+∠D=72°,进而得到∠DEA=108°,即可求得∠CED′.
(1)利用四边形的内角和和已知条件中的对角相等得到邻角互补,从而判定两组对边平行,进而证得结论;(2)由(1)即可得出结论.(3)利用平行四边形同旁内角互补,对角相等即可完成解答.
【详解】
解:∵ABCD是平行四边形,
∴∠B=∠D=52°,
由折叠得:∠DAE=D′AE=20°,∠DEA=∠D′EA,
∴∠AEC=∠DAE+∠D=20°+52°=72°,∠DEA=180°−72°=108°,
∴∠CED′=∠D′EA−∠AEC=108°−72°=36°,
故答案为36°.
(1)小明的解法不正确,错在推出后,再由,不能直接推出.
正确证明:∵
∴
∴
∴.
同理
∴四边形是平行四边形
(2)两组对角分别相等的四边形是平行四边形
(3)根据题(2)可得,当时,
所以,四边形ABCD两组对角分别相等,
所以, 四边形是平行四边形
故选:B
本题考查了平行四边形的判定,解题的关键是了解平行四边形的几个判定定理.
25、(1);;(2)或.
【解析】
(1)由点A坐标及AB、AD长可写出B、C、D的坐标;
(2)设点P的坐标为(a,0),表示出三角形的面积和长方形ABCD面积,由两者间的数量关系可得a的值.
【详解】
解:(1)由长方形ABCD可知,B点可看做A点向右平移AB长个单位得到,故B点坐标为 ,C点可看做A点向下平移AD长个单位得到,故C点坐标为 ,D点可看做C点向左平移CD长个单位得到,故D点坐标为 .
(2)设点P的坐标为,则点P到直线AD的距离为,
所以
由题意得,解得或6
所以点P的坐标为或.
本题考查了平面直角坐标系,长方形中由已知点写其余点坐标时,可将其余点看做由已知点平移得到,正确根据点的坐标表示出图形的面积是解题的关键.
26、(1)填写表格见解析;(2)乙组成绩更好一些;(3)①从众数看,甲班众数成绩优于乙班;②从中位数看,甲班每分钟输入135字以上的人数比乙班多;③从平均数看,两班同学输入的总字数一样,成绩相当;④从方差看,甲班成绩波动小,比较稳定;⑤从最好成绩看,乙班成绩优于甲班.(至少从两个角度进行评价).
【解析】
(1)根据众数、中位数、平均数以及方差的计算公式分别进行解答即可;
(2)根据表中给出的数据,得出甲组优秀的人数有3人,乙组优秀的人数有4人,从而得出乙组成绩更好一些;
(3)从中位数看,甲组每分钟输入135字以上的人数比乙组多;从方差看,S2甲<S2乙;甲组成绩波动小,比较稳定.
【详解】
解:(1)如下表:
(2)∵每分钟输入汉字个数136及以上的甲组人数有3人,乙组有4人
∴乙组成绩更好一些
(3)①从众数看,甲班每分钟输入135字的人数最多,乙班每分钟输入134字的人数最多,甲班众数成绩优于乙班;
②从中位数看,甲班每分钟输入135字以上的人数比乙班多;
③从平均数看,两班同学输入的总字数一样,成绩相当;
④从方差看,甲的方差小于乙的方差,则甲班成绩波动小,比较稳定;
⑤从最好成绩看,乙班速度最快的选手比甲班多1人,若比较前3~4名选手的成绩,则乙班成绩优于甲班.(至少从两个角度进行评价).
此题考查了平均数、中位数、众数和方差的定义,从表中得到必要的信息是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
输入汉字(个)
132
133
134
135
136
137
甲组人数(人)
1
0
1
5
2
1
乙组人数(人)
0
1
4
1
2
2
组
众数
中位数
平均数()
方差()
甲组
乙组
134
134.5
135
1.8
组
众数
中位数
平均数()
方差()
甲组
135
135
135
1.6
乙组
134
134.5
135
1.8
相关试卷
这是一份湖北省襄阳襄州区五校联考2024年九年级数学第一学期开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省襄州区六校联考2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省襄阳市襄州区黄龙中学2024年九上数学开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
