湖北省十堰市十堰外国语学校2025届九年级数学第一学期开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将不等式组的解集在数轴上表示出来,正确的是( )
A.B.
C.D.
2、(4分)如图,点 E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF; ③AF=CE;④∠AEB=∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )
A.①②③B.①②④C.①③④D.②③④
3、(4分)下列计算正确的是
A.B.C.D.
4、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为( )
A.3B.4C.5D.6
5、(4分)一副三角板按图 1 所示的位置摆放,将△DEF 绕点 A(F)逆时针旋转 60°后(图 2), 测得 CG=8cm,则两个三角形重叠(阴影)部分的面积为()
A.16+16 cm2
B.16+ cm2
C.16+ cm2
D.48cm2
6、(4分)若实数3是不等式2x–a–2<0的一个解,则a可取的最小正整数为( )
A.2B.3C.4D.5
7、(4分)如图,已知长方形ABCD中AB = 8cm,BC = 10cm,在边CD上取一点E,将△ADE折叠,使点D恰好落在BC边上的点F,则CF的长为( )
A.2cmB.3cmC.4cmD.5cm
8、(4分)已知一元二次方程2x2﹣5x+1=0的两根为x1,x2,下列结论正确的是( )
A.两根之和等于﹣,两根之积等于1
B.x1,x2都是有理数
C.x1,x2为一正一负根
D.x1,x2都是正数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为 cm(结果不取近似值).
10、(4分)如图,在平行四边形中,,.以点为圆心,适当长为半径画弧,交于点,交于点,再分别以点,为圆心,大于的长为半径画弧,两弧相交于点,射线交的延长线于点,则的长是____________.
11、(4分)在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第_____象限.
12、(4分)若一组数据1,2,3,x,0,3,2的众数是3,则这组数据的中位数是_____.
13、(4分)廖老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:
则这10名学生周末利用网络进行学习的平均时间是________小时.
三、解答题(本大题共5个小题,共48分)
14、(12分)某类儿童服装以每件40元的价格购进800件,售价为每件80元,五月售出200件.六月,批发商决定采取“降价促销”的方式喜迎“六一”,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;七月,批发商将对剩余的童装一次性清仓销售,清仓时单价为40元,设六月单价降低x元
(1)填表
(2)如果批发商希望通过销售这批T恤获利9000元,那么六月的单价应是多少元?
15、(8分)A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.
16、(8分)如图,在菱形中,是的中点,且,;
求:(1)的大小;
(2)菱形的面积.
17、(10分)八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A,B,C,D,E五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图.
(1)求a,b的值;
(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;
(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.
18、(10分)已知二次函数y=x2-2x-3.
(1)完成下表,并在平面直角坐标系中画出这个函数图像.
(2)结合图像回答:
①当时,有随着的增大而 .
②不等式的解集是 .
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)平面直角坐标系xOy中,直线y=11x﹣12与x轴交点坐标为_____.
20、(4分)当x _________时,分式有意义.
21、(4分)若在实数范围内有意义,则的取值范围是____________.
22、(4分)如图,二次函数的图象与x轴交于A,B两点,与y轴交于点C,且,则下列结论:;;;其中正确结论的序号是______.
23、(4分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95、90、88,则小彤这学期的体育成绩为______分.
二、解答题(本大题共3个小题,共30分)
24、(8分)己知:,,求下列代数式的值:
(1);
(2).
25、(10分)近年,教育部多次明确表示,今后中小学生参加体育活动情况、学生体质健康状况和运动技能等级纳入初中、高中学业水平考试,纳入学生综合素质评价体系.为更好掌握学生体育水平,制定合适的学生体育课内容,某初级中学对本校初一,初二两个年级的学生进行了体育水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:
(收集数据)从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下:
(整理数据)按如下分段整理样本数据:
(分析数据)对样本数据边行如下统计:
(得出结论)
(1)根据统计,表格中a、b、c、d的值分别是 、 、 、 .
(2)若该校初一、初二年级的学生人数分别为800人和1000人,则估计在这次考试中,初一、初二成绩90分以上(含90分)的人数共有 人.
(3)根据以上数据,你认为 (填“初一“或“初二”)学生的体育整体水平较高.请说明理由(一条理由即可).
26、(12分)已知,AC是□ABCD的对角线,BM⊥AC,DN⊥AC,垂足分别是M、N.
求证:四边形BMDN是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据解不等式组的方法可以求得原不等式组的解集,并把它的解集在数轴上表示出来.
【详解】
解:,
由不等式①,得x>3,
由不等式②,得x≤4,
∴原不等式组的解集是3<x≤4,在数轴上表示如下图所示,
,
故选:C.
本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是明确解不等式的方法,会在数轴上表示不等式组的解集.
2、D
【解析】
分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.
详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;
添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE ∥BF,∴DEBF是平行四边形,故②正确;
添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF ∥BE,∴DEBF是平行四边形,故③正确;
添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF ∥BE,∴DEBF是平行四边形,故④正确.
综上所述:可添加的条件是:②③④.
故选D.
点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.
3、A
【解析】
A. ,故正确;
B. ,故不正确;
C. ,故不正确;
D. ,故不正确;
故选A.
4、A
【解析】
根据已知条件易证△DEO≌△BFO,可得△DEO和△BFO的面积相等,由此可知阴影部分的面积等于Rt△ADC的面积,继而求得阴影部分面积.
【详解】
∵四边形ABCD是矩形,AB=2,BC=3,
∴AD∥BC,AD=BC=3,AB=CD=2,OB=OD,
∴∠DEO=∠BFO,
在△DEO和△FBO中,
,
∴△DEO≌△BFO,
即△DEO和△BFO的面积相等,
∴阴影部分的面积等于Rt△ADC的面积,
即阴影部分的面积是:
故选A..
本题考查了矩形的性质及全等三角形的判定与性质,证明△DEO≌△BFO,得到阴影部分的面积等于Rt△ADC的面积是解决问题的关键.
5、B
【解析】
过G点作GH⊥AC于H,则∠GAC=60°,∠GCA=45°,GC=8cm,先在Rt△GCH中根据等腰直角三角形三边的关系得到GH与CH的值,然后在Rt△AGH中根据含30°的直角三角形三边的关系求得AH,最后利用三角形的面积公式进行计算即可.
【详解】
解:过G点作GH⊥AC于H,如图,
∠GAC=60°,∠GCA=45°,GC=8cm,
在Rt△GCH中,GH=CH=GC=4cm,
在Rt△AGH中,AH=GH=cm,
∴AC=AH+CH=+4(cm).
∴两个三角形重叠(阴影)部分的面积=AC•GH=×(+4)×4=16+cm2
故选:B.
本题考查了解直角三角形:求直角三角形中未知的边和角的过程叫解直角三角形.也考查了含30°的直角三角形和等腰直角三角形三边的关系以及旋转的性质.
6、D
【解析】
解:根据题意,x=3是不等式的一个解,∴将x=3代入不等式,得:6﹣a﹣2<0,解得:a>4,则a可取的最小正整数为5,故选D.
点睛:本题主要考查不等式的整数解,熟练掌握不等式解得定义及解不等式的能力是解题的关键.
7、C
【解析】
分析:由将△ADE折叠使点D恰好落在BC边上的点F可得Rt△ADE≌Rt△AFE,所以AF=10cm.在Rt△ABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的长可求出BF的长,进而得到结论.
详解:∵四边形ABCD是矩形,∴AD=BC=10cm,CD=AB=8cm,根据题意得:Rt△ADE≌Rt△AFE,∴AF=10cm.在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm,∴CF=BC﹣BF=10﹣6=4(cm).
故选C.
点睛:本题主要考查了图形的翻折变换以及勾股定理、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.
8、D
【解析】
根据根与系数的关系,可得答案.
【详解】
解:A、x1+x2=,x1•x2=,故A错误;
B、x1==,x2==,故B错误;
C、x1==>0,x2==>0,故C错误;
D、x1==>0,x2==>0,故D正确;
故选:D.
本题考查查了根与系数的关系,利用根与系数的关系是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由于点B与点D关于AC对称,所以如果连接DQ,交AC于点P,那么△PBQ的周长最小,此时△PBQ的周长=BP+PQ+BQ=DQ+BQ.在Rt△CDQ中,由勾股定理先计算出DQ的长度,再得出结果.
【详解】
连接DQ,交AC于点P,连接PB、BD,BD交AC于O.
∵四边形ABCD是正方形,
∴AC⊥BD,BO=OD,CD=2cm,
∴点B与点D关于AC对称,
∴BP=DP,
∴BP+PQ=DP+PQ=DQ.
在Rt△CDQ中,DQ=cm,
∴△PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ=+1(cm).
故答案为(+1).
本题考查了正方形的性质;轴对称-最短路线问题,解题的关键是根据两点之间线段最短,确定点P的位置.
10、3
【解析】
根据角平分线的作图和平行四边形的性质以及等腰三角形的判定和性质解答即可.
【详解】
由作图可知:BH是∠ABC的角平分线,
∴∠ABG=∠GBC,
∵平行四边形ABCD,
∴AD∥BC,
∴∠AGB=∠GBC,
∴∠ABG=∠AGB,
∴AG=AB=4,
∴GD=AD=AG=7-4=3,
∵平行四边形ABCD,
∴AB∥CD,
∴∠H=∠ABH=∠AGB,
∵∠AGB=∠HGD,
∴∠H=∠HGD,
∴DH=GD=3,
故答案为:3.
此题考查角平分线的做法,平行四边形的性质,熟练根据角平分线的性质得出∠ABG=∠GBC是解题关键.
11、二
【解析】
根据各象限内点的坐标特征,可得答案.
【详解】
解:由点A(x,y)在第三象限,得
x<0,y<0,
∴x<0,-y>0,
点B(x,-y)在第二象限,
故答案为:二.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
12、1
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
【详解】
解:∵1,1,3,x,0,3,1的众数是3,
∴x=3,
先对这组数据按从小到大的顺序重新排序0,1,1,1,3,3,3,位于最中间的数是1,
∴这组数的中位数是1.
故答案为:1;
本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.
13、2.1
【解析】
依据加权平均数的概念求解可得.
【详解】
解:这10名学生周末利用网络进行学习的平均时间是:
;
故答案为:2.1.
本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
三、解答题(本大题共5个小题,共48分)
14、(1)80﹣x,200+1x,800﹣200﹣(200+1x)或400﹣1x;(2)六月的单价应该是70元.
【解析】
(1)根据题意直接用含x的代数式表示即可;
(2)销售额﹣进价=利润,作为相等关系列函数关系式得出即可.
【详解】
解:(1)80﹣x,200+1x,800﹣200﹣(200+1x)或400﹣1x.
故答案是:
(2)根据题意,得(40﹣x)(200+1x)=9000,
解得x1=x2=1.
当x=1时,80﹣x=70>40
答:六月的单价应该是70元.
此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,有关销售问题中的等量关系一般为:利润=售价﹣进价.
15、甲车的速度是60千米/时,乙车的速度是90千米/时.
【解析】
根据题意,设出甲、乙的速度,然后根据题目中两车相遇时时间相同,列出方程,解方程即可.
【详解】
设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,
,
解得,x=60,
经检验,x=60是原方程的解.
则x+30=90,
即甲车的速度是60千米/时,乙车的速度是90千米/时.
16、(1);(2).
【解析】
(1)由为中点,,可证,从而是等边三角形,,进而可求的大小;
(2)由菱形的性质可求,从而,,根据勾股定理求出AO的长,然后根据菱形面积公式求解即可.
【详解】
(1)连接,
∵为中点,,
∴垂直平分,
∴,
∵四边形是菱形,
∴,
∴,
∴是等边三角形,
∴.
∴.
(2)在菱形中,,
∴,,
∴,
∴,
根据勾股定理可得:,
即,
∴.
此题考查了菱形的性质,等边三角形的判定与性质,含30度角的直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用是解题关键.
17、 (1)a=20,b=15;(2)该班学生这一周帮助父母做家务时间的平均数约为1.68小时;(3)符合实际,理由见解析.
【解析】
(1)读图可知:C等级的频率为40%,总人数为50人,可求出a,则b也可得到;
(2)借助求出的a b的值,可估计出该班学生在这次社会活动中帮父母做家务的平均时间;
(3)求得中位数后,根据中位数的意义分析.
【详解】
(1)a=50×40%=20,b=50-2-10-20-3=15;
(2)由“中值法”可知,=1.68(小时),
答:该班学生这一周帮助父母做家务时间的平均数约为1.68小时;
(3)符合实际.
设中位数为m,根据题意,m的取值范围是1.5≤m<2,因为小明帮父母做家务的时间大于中位数.所以他帮父母做家务的时间比班级中一半以上的同学多.
本题考查读频数分布直方图、扇形图的能力和利用统计图获取信息的能力,加权平均数的计算以及中位数的应用.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
18、(1)完成表格,函数图象见解析;(2)①增大;②.
【解析】
(1)选取合适的x的值,求出对应的y的值即可完成表格,再利用描点法可得函数图象;
(2)根据函数图象解答可得.
【详解】
(1)完成表格如下:
函数图象如下:
(2)①由函数图象可知,当x>1时,y随x的增大而增大;
②不等式x2-2x-3<0的解集是-1<x<3.
本题主要考查二次函数与不等式,解题的关键是熟练将不等式的解集转化为二次函数的图象问题解决.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 (,0).
【解析】
直线与x轴交点的横坐标就是y=0时,对应x的值,从而可求与x轴交点坐标.
【详解】
解:当y=0时,0=11x﹣12
解得x=,
所以与x轴交点坐标为(,0).
故答案为(,0).
本题主要考查一次函数与坐标轴的交点,掌握一次函数与坐标轴的交点的求法是解题的关键.
20、≠3
【解析】
解:根据题意得x-3≠0,即x≠3
故答案为:≠3
21、且.
【解析】
分析:根据分式有意义和二次根式有意义的条件解题.
详解:因为在实数范围内有意义,所以x≥0且x-1≠0,则x≥0且x≠1.
故答案为x≥0且x≠1.
点睛:本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数是非负数,代数式既有分式又有二次根式时,分式与二次根式都要有意义.
22、①③④
【解析】
(1)∵抛物线开口向下,
∴,
又∵对称轴在轴的右侧,
∴ ,
∵抛物线与轴交于正半轴,
∴ ,
∴,即①正确;
(2)∵抛物线与轴有两个交点,
∴,
又∵,
∴,即②错误;
(3)∵点C的坐标为,且OA=OC,
∴点A的坐标为,
把点A的坐标代入解析式得:,
∵,
∴,即③正确;
(4)设点A、B的坐标分别为,则OA=,OB=,
∵抛物线与轴交于A、B两点,
∴是方程的两根,
∴,
∴OA·OB=.即④正确;
综上所述,正确的结论是:①③④.
23、1
【解析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:根据题意得:
95×20%+1×30%+88×50%=1(分).
即小彤这学期的体育成绩为1分.
故答案为:1.
本题考查加权平均数,掌握加权平均数的计算公式是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1);(2)
【解析】
(1)首先将代数式进行通分,然后根据已知式子,即可得解;
(2)首先根据完全平方差公式,将代数式展开,然后将已知式子转换形式,代入即可得解.
【详解】
∵,,
∴,
(1)
(2)
此题主要考查二次根式的运算,熟练掌握,即可解题.
25、(1)3、6、84.5、85;(2)490;(3) “初二”,理由详见解析.
【解析】
(1)根据给出的统计表求出a、b,根据中位数和众数的概念求出c、d;
(2)用样本估计总体,得到答案;
(3)根据平均数的性质解答.
【详解】
解:(1)由统计表中的数据可知,a=3,b=6,c==84.5,d=85,
故答案为:3;6;84.5;85;
(2)初一成绩90分以上(含90分)的人数共有:800×=240(人),
初二成绩90分以上(含90分)的人数共有1000×=250(人),
240+250=490(人),
故答案为:490;
(3)“初二”学生的体育整体水平较高,
原因是:初二年级的平均数大于初一年级的平均数,
故答案为:“初二”.
本题考查了数据的统计与分析,熟知平均数、中位数、众数、方差等的实际意义是解题的关键.
26、证明见解析
【解析】
由题意即可推出DN∥BM,通过求证△ADN≌△CBM即可推出DN=BM,便知四边形BMDN是平行四边形.
【详解】
证明:∵BM⊥AC,DN⊥AC,
∴∠DNA=∠BMC=90°,
∴DN∥BM,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠DAN=∠BCM,
∴△ADN≌△CBM,
∴DN=BM,
∴四边形BMDN是平行四边形.
本题主要考查平行四边形的判定与性质、全等三角形的判定与性质,熟悉相关性质是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
时间(单位:小时)
4
3
2
l
0
人数
3
4
1
1
1
时间
五月
六月
七月清仓
单价(元/件)
80
40
销售量(件)
200
x
…
…
y
…
…
初一年级
88
58
44
90
71
88
95
63
70
90
81
92
84
84
95
31
90
85
76
85
初二年级
75
82
85
85
76
87
69
93
63
84
90
85
64
85
91
96
68
97
57
88
分段
年级
0≤x<60
60≤x<70
70≤x<80
80≤x<90
90≤x≤100
初一年级
a
1
3
7
b
初二年级
1
4
2
8
5
统计量
年级
平均数
中位数
众数
方差
初一年级
78
c
90
284.6
初二年级
81
85
d
126.4
时间
第一个月
第二个月
清仓时
单价(元)
80
80﹣x
40
销售量(件)
200
200+1x
800﹣200﹣(200+1x)或400﹣1x
x
…
-1
0
1
2
3
…
y
…
0
-3
-4
-3
0
…
2025届湖北省十堰市部分学校九年级数学第一学期开学学业质量监测试题【含答案】: 这是一份2025届湖北省十堰市部分学校九年级数学第一学期开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省十堰市实验中学九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024年湖北省十堰市实验中学九年级数学第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省十堰市名校九年级数学第一学期开学综合测试模拟试题【含答案】: 这是一份2024年湖北省十堰市名校九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。