年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    黑龙江省青龙山农场场直中学2025届九上数学开学调研模拟试题【含答案】

    黑龙江省青龙山农场场直中学2025届九上数学开学调研模拟试题【含答案】第1页
    黑龙江省青龙山农场场直中学2025届九上数学开学调研模拟试题【含答案】第2页
    黑龙江省青龙山农场场直中学2025届九上数学开学调研模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省青龙山农场场直中学2025届九上数学开学调研模拟试题【含答案】

    展开

    这是一份黑龙江省青龙山农场场直中学2025届九上数学开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,OP平分∠AOB,点C,D分别在射线OA,OB上,添加下列条件,不能判定△POC≌△POD的是( )
    A.OC=ODB.∠CPO=∠DPO
    C.PC=PDD.PC⊥OA,PD⊥OB
    2、(4分)平行四边形不一定具有的性质是( )
    A.对角线互相垂直B.对边平行且相等C.对角线互相平分D.对角相等
    3、(4分)如图,在菱形ABCD中,AC与BD相交于点O,AC=6,BD=8,则菱形边长AB等于( )
    A.10B.C.5D.6
    4、(4分)某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是( )
    A.8B.7C.9D.10
    5、(4分)下列事件是确定事件的是( )
    A.射击运动员只射击1次,就命中靶心
    B.打开电视,正在播放新闻
    C.任意一个三角形,它的内角和等于180°
    D.抛一枚质地均匀的正方体骰子,朝上一面的点数为6
    6、(4分)某批发部对经销的一种电子元件调查后发现,一天的盈利y(元)与这天的销售量x(个)之间的函数关系的图像如图所示下列说法不正确的是( ).
    A.一天售出这种电子元件300个时盈利最大
    B.批发部每天的成本是200元
    C.批发部每天卖100个时不赔不赚
    D.这种电子元件每件盈利5元
    7、(4分)如图,在菱形ABCD中,∠BAD=60°,AB=2,E是DC边上一个动点,F是AB边上一点,∠AEF=30°.设DE=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ).
    A.线段ECB.线段AEC.线段EFD.线段BF
    8、(4分)将方程化成一元二次方程的一般形式,正确的是( ).
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图所示,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF=____________.
    10、(4分)如图,正方形的边长为4,在这个正方形内作等边三角形(三角形的顶点可以在正方形的边上),使它们的中心重合,则的顶点到正方形的顶点的最短距离是___________.
    11、(4分)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为 .
    12、(4分)如图,已知一块直角三角板的直角顶点与原点重合,另两个顶点,的坐标分别为,,现将该三角板向右平移使点与点重合,得到,则点的对应点的坐标为__________.
    13、(4分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)请阅读,并完成填空与证明:
    初二(8)、(9)班数学兴趣小组展示了他们小组探究发现的结果,内容为:图1,正三角形中,在,边上分别取,,使,连接,,发现利用“”证明≌,可得到,,再利用三角形的外角定理,可求得
    (1)图2正方形中,在,边上分别取,,使,连接,,那么 ,且 度,请证明你的结论.
    (2)图3正五边形中,在,边上分别取,,使,连接,,那么 ,且 度;
    (3)请你大胆猜测在正边形中的结论:
    15、(8分)近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作、、、;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:

    (1)本次调查的学生总数为 人;
    (2)在扇形统计图中,所对应扇形的圆心角 度,并将条形统计图补充完整;
    (3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.
    16、(8分)某花卉基地出售文竹和发财树两种盆栽,其单价为:文竹盆栽12元/盆,发财树盆栽15元/盆。如果同一客户所购文竹盆栽的数量大于800盆,那么每盆文竹可降价2元.某花卉销售店向花卉基地采购文竹400盆~900盆,发财树若干盆,此销售店本次用于采购文竹和发财树恰好花去12000元.然后再以文竹15元,发财树20元的单价实卖出.若设采购文竹x盆,发财树y盆,毛利润为W元.
    (1)当时,y与x的数量关系是_______,W与x的函数解析式是_________;
    当时,y与x的数量关系是___________,W与x的函数解析式是________;
    (2)此花卉销售店应如何采购这两种盆栽才能使获得毛利润最大?
    17、(10分)如图,在△ABC中,点D,E分别是边BC,AC上的中点,连接DE,并延长DE至点F,使EF=ED,连接AD,AF,BF,CF,线段AD与BF相交于点O,过点D作DG⊥BF,垂足为点G.
    (1)求证:四边形ABDF是平行四边形;
    (2)当时,试判断四边形ADCF的形状,并说明理由;
    (3)若∠CBF=2∠ABF,求证:AF=2OG.
    18、(10分)已知:如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,菱形由6个腰长为2,且全等的等腰梯形镶嵌而成,则菱形的对角线的长为_____.
    20、(4分)当x≤2时,化简:=________
    21、(4分)如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.
    22、(4分)若一个多边形的内角和是900º,则这个多边形是 边形.
    23、(4分)如图,直线与的交点坐标为,当时,则的取值范围是__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)选用适当的方法解下列方程:
    (1)(x-2)2-9=0;
    (2)x(x+4)=x+4.
    25、(10分)如图①,在矩形ABCD中,AB=,BC=3,在BC边上取两点E、F(点E在点F的左边),以EF为边所作等边△PEF,顶点P恰好在AD上,直线PE、PF分别交直线AC于点G、H.
    (1)求△PEF的边长;
    (2)若△PEF的边EF在线段CB上移动,试猜想:PH与BE有何数量关系?并证明你猜想的结论;
    (3)若△PEF的边EF在射线CB上移动(分别如图②和图③所示,CF>1,P不与A重合),(2)中的结论还成立吗?若不成立,直接写出你发现的新结论.
    26、(12分)某校学生会干部对校学生会倡导的“牵手特殊教育”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).己知A、B两组捐款人数的比为1: 5.
    请结合以上信息解答下列问题.
    (1)a= ,本次调查样本的容量是 ;
    (2)先求出C组的人数,再补全“捐款人数分组统计图1”
    (3)根据统计情况,估计该校参加捐款的4500名学生有多少人捐款在20至40元之间.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据三角形全等的判定方法对各选项分析判断即可得解.
    【详解】
    ∵OP是∠AOB的平分线,
    ∴∠AOP=∠BOP,而OP是公共边,
    A、添加OC=OD可以利用“SAS”判定△POC≌△POD,
    B、添加∠OPC=∠OPD可以利用“ASA”判定△POC≌△POD,
    C、添加PC=PD符合“边边角”,不能判定△POC≌△POD,
    D、添加PC⊥OA,PD⊥OB可以利用“AAS”判定△POC≌△POD,
    故选:C.
    本题考查了角平分线的定义,全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.
    2、A
    【解析】
    结合平行四边形的性质即可判定。
    【详解】
    结合平行四边形的性质可知选项B、C、D均正确,但平行四边形的对角线不垂直,则A不正确.
    故选A.
    本题考查了平行四边形的性质,熟练掌握平行四边形的性质是正确解题的关键。
    3、C
    【解析】
    根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.
    【详解】
    ∵四边形ABCD是菱形,
    ∴OA=AC,OB=BD,AC⊥BD,
    ∵AC=8,BD=6,
    ∴OA=4,OB=3,
    ∴AB==1,
    即菱形ABCD的边长是1.
    故选:C.
    考查了菱形的对角线互相垂直平分的性质和勾股定理的应用,熟记菱形的对角线的关系(互相垂直平分)是解题的关键.
    4、C
    【解析】
    试题分析:根据中位数的概念求解.∵共有10名同学,∴第5名和第6名同学的读书时间的平均数为中位数,则中位数为:=1.
    故选C.
    考点:中位数.
    5、C
    【解析】
    利用随机事件以及确定事件的定义分析得出答案.
    【详解】
    A.射击运动员只射击1次,就命中靶心,是随机事件. 故选项错误;
    B.打开电视,正在播放新闻,是随机事件.故选项错误;
    C.任意一个三角形,它的内角和等于180°,是必然事件.故选项正确;
    D.抛一枚质地均匀的正方体骰子,朝上一面的点数为6,是随机事件.故选项错误.
    故选C.
    本题考查了随机事件和确定事件,正确把握相关事件的确定方法是解题的关键.
    6、D
    【解析】
    分析:根据一次函数的图形特征,一一判断即可.
    详解:根据图像可知售出这种电子元件300个时盈利最大,故A正确.
    当售出这种电子元件0个时,利润为-200,故每天的成本为200元,故B正确.
    当售出这种电子元件100个时,利润为0元,故每天卖100个时不赔不赚,故C正确.
    当出售300个的利润为400元,所以每个的利润为元,故D错误.
    点睛:本题是用图像表示变量间关系的问题,结合题意读懂图像是解题的关键.
    7、B
    【解析】
    分析:求出当点E与点D重合时,即x=0时EC、AE、EF、BF的长可排除C、D;当点E与点C重合时,即x=2时,求出EC、AE的长可排除A,可得答案.
    详解:当点E与点D重合时,即x=0时,EC=DC=2,AE=AD=2,
    ∵∠A=60°,∠AEF=30°,
    ∴∠AFD=90°,
    在Rt△ADF中,∵AD=2,
    ∴AF=AD=1,EF=DF=ADcs∠ADF=,
    ∴BF=AB-AF=1,结合图象可知C、D错误;
    当点E与点C重合时,即x=2时,
    如图,连接BD交AC于H,
    此时EC=0,故A错误;
    ∵四边形ABCD是菱形,∠BAD=60°,
    ∴∠DAC=30°,
    ∴AE=2AH=2ADcs∠DAC=2×2×=2,故B正确.
    故选:B.
    点睛:本题主要考查动点问题的函数图象与菱形的性质、解直角三角形的应用,结合函数图象上特殊点的实际意义排除法求解是解此题的关键.
    8、B
    【解析】
    通过移项把方程4x2+5x=81化成一元二次方程的一般形式.
    【详解】
    方程4x2+5x=81化成一元二次方程的一般形式是4x2+5x-81=1.
    故选B.
    此题主要考查了一元二次方程的一般形式,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=1(a≠1).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、10
    【解析】
    先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF的值.
    【详解】
    设BD=x,则CD=20−x,
    ∵△ABC是等边三角形,
    ∴∠B=∠C=60∘.
    ∴BE=cs60∘⋅BD=,
    同理可得,CF=,
    ∴BE+CF=+=10.
    本题考查等边三角形的性质,解题的关键是掌握等边三角形的性质.
    10、
    【解析】
    当G,O,C共线时,△EFG的顶点到正方形ABCD的顶点的最短,即点G在对角线上,在△AOE中,∠CAE=45°,∠AOE=60°,OE=r,解三角形可求r,即可求最短距离.
    【详解】
    如图:当G,O,C共线时,△EFG的顶点到正方形ABCD的顶点的最短,即点G在对角线上.
    作EM⊥AC于M
    ∵ABCD是正方形,AB=4
    ∴AC=,AO=,∠CAB=45°
    ∵△EFG是等边三角形
    ∴∠GOE=120°
    ∴∠AOE=60°
    设OE为r
    ∵∠AOE=60°,ME⊥AO
    ∴MO=OE=r,ME=MO=r
    ∵∠MAE=45°,AM⊥ME
    ∴∠MAE=∠MEA=45°,
    ∴AM=ME=r,
    ∵AM+MO=AO
    ∴r+r=
    ∴r=
    ∵AG=AM=MO+OG=r+r+r=
    ∴GC=
    故答案为:.
    本题主要考查了两点间距离最短,由题意分析出距离最短的情况是解题的关键.
    11、48°
    【解析】
    试题分析:因为AB∥CD,∠B=68°,所以∠CFE=∠B=68°,又∠CFE=∠D+∠E, ∠E=20°,所以∠D=∠CFE-∠E=68°-20°=48°.
    考点:1.平行线的性质2.三角形的外角的性质
    12、
    【解析】
    根据A点的坐标,得出OA的长,根据平移的条件得出平移的距离,根据平移的性质进而得出答案.
    【详解】
    ∵A(-1,0),
    ∴OA=1,
    ∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A与点O重合,得到△OCB′,
    ∴平移的距离为1个单位长度,
    ∵点B的坐标为
    ∴点B的对应点B′的坐标是,
    故答案为:.
    此题主要考查根据平移的性质求点坐标,熟练掌握,即可解题.
    13、24
    【解析】∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,
    ∴口袋中白色球的个数很可能是(1-15%-45%)×60=24个.
    三、解答题(本大题共5个小题,共48分)
    14、(1); ;证明详见解析;(2) ;;(3)对于正n边形,结论为:,
    【解析】
    (1)利用SAS证出≌,从而证出,,然后利用等量代换即可得出结论;
    (2)先求出正五边形的每个内角的度数,利用SAS证出≌,从而证出,,然后利用等量代换即可得出结论;
    (3)根据题意,画出图形,然后根据(1)(2)的方法推出结论即可.
    【详解】
    (1) ,且度.证明如下:
    ∵四边形是正方形
    ∴,
    在△ABN和△DAM中
    ∴≌
    ∴,


    故答案为:; ;
    (2) 且度.证明如下:
    正五边形的每个内角为:,
    ∴,
    在△ABN和△EAM中
    ∴≌
    ∴,


    故答案为:; ;
    (3)设这个正n边形为,在,边上分别取,,使,连接,,和交于点O,如下图所示:
    正n边形的每个内角为:,
    ∴,
    在和中
    ∴≌
    ∴,


    即对于正n边形,结论为:,.
    此题考查的是全等三角形的判定及性质和多边形的内角和,掌握全等三角形的判定及性质和多边形的内角和公式是解决此题的关键.
    15、(1)50;(2)144°,图见解析;(3) .
    【解析】
    (1)根据“优”的人数和所占的百分比即可求出总人数;
    (2)用360°乘以“良”所占的百分比求出B所对应扇形的圆心角;用总人数减去“优”、“良”、“差”的人数,求出“中”的人数,即可补全统计图;
    (3)根据题意画出树状图得出所以等情况数和所选的两位同学测试成绩恰好都为“良”的情况数,然后根据概率公式即可得出答案.
    【详解】
    (1)本次调查的学生总数为:15÷30%=50(人);
    故答案为:50;
    (2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;
    “中”等级的人数是:50-15-20-5=10(人),补图如下:
    故答案为:10;
    (3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:
    共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,
    则所选的两位同学测试成绩恰好都为“良”的概率是 .
    此题考查列表法或树状图法求概率.解题关键在于掌握列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    16、(1)当时,(或填),;当时, (或填),;(2)采购文竹900盆,发财树200盆,毛利润最大为5500元
    【解析】
    (1)根据题意,可直接列出关系式;
    (2)根据题意,分情况进行分析,进而得出采购文竹900盆,发财树200盆,毛利润最大为5500元.
    【详解】
    (1)根据题意,可得
    当时,
    (或填),
    即;
    当时,
    (或填),
    即;
    (2)当时,
    ∵,W随着x的增大而减小
    ∴当x取400时,,W有最大值3600,
    当时,
    ∵,W随着x的增大而增大
    ∴当x取900时,,W有最大值5500,
    综上所述,采购文竹900盆,发财树200盆,毛利润最大为5500元
    此题主要考查一次函数的实际应用,熟练掌握,即可解题.
    17、 (1)证明见解析;(2)四边形ADCF是矩形,理由见解析;(3)证明见解析.
    【解析】
    (1)欲证明四边形ABDF是平行四边形,只要证明AF∥BD,AF=BD即可.
    (2)结论:四边形ADCF是矩形,只要证明∠DAF=90°即可.
    (3)作AM⊥DG 于M,连接BM,先证明AM=2OG,再证明AM=AF即可解决问题.
    【详解】
    (1)证明:∵点D,E分别是边BC,AC上的中点,
    ∴ED∥AB,AE=CE,
    ∵EF=ED,
    ∴四边形ADCF是平行四边形,
    ∴AF∥BC,
    ∴四边形ABDF是平行四边形;
    (2)四边形ADCF是矩形.
    理由:∵AE=DF,EF=ED,
    ∴AE=EF=DE,
    ∴∠EAF=∠AFE,∠DAE=∠ADE,
    ∴∠DAF=∠EAF+∠EAD=×180°=90°,
    由(1)知:四边形ADCF是平行四边形;
    ∴四边形ADCF是矩形;
    (3)证明:作AM⊥DG 于M,连接BM.
    ∵四边形ABDF是平行四边形,
    ∴OA=OD,∵OG∥AM,
    ∴GM=GD,
    ∴AM=2OG,
    ∵BG⊥DM,GM=GD,
    ∴BM=BD,
    ∴∠CBF=∠MBG,
    ∵∠CBF=2∠ABF,
    ∴∠ABM=∠ABF,
    ∵AM∥BF,
    ∴∠MAB=∠ABF,
    ∴∠MAB=∠MBA,
    ∴AM=BM=BD=AF=2OG,
    ∴AF=2OG.
    本题考查四边形综合题、平行四边形的判定和性质、矩形的判定和性质、三角形中位线定理等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线.
    18、36
    【解析】
    连接AC,根据勾股定理可求AC,再利用勾股定理逆定理可判定△ACD为直接三角形,进而可求答案.
    【详解】
    解:连结AC,在Rt△ABC中

    在△ADC中
    ∵,

    ∴△ADC是直角三角形, ∠ACD=90°
    本题考查的是勾股定理和勾股定理的逆定理,能够灵活运用所学知识是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据图形可知∠ADC=2∠A,又两邻角互补,所以可以求出菱形的锐角内角是60°;再根据AD=AB可以得出梯形的上底边长等于腰长,即可求出梯形的下底边长,所以菱形的边长可得,线段AC便不难求出.
    【详解】
    根据图形可知∠ADC=2∠A,又∠ADC+∠A=180°,
    ∴∠A=60°,
    ∵AB=AD,
    ∴梯形的上底边长=腰长=2,
    ∴梯形的下底边长=4(可以利用过上底顶点作腰的平行线得出),
    ∴AB=2+4=6,
    ∴AC=2ABsin60°=2×6×=6.
    故答案为:6.
    本题考查的是等腰梯形的性质,仔细观察图形得到角的关系和梯形的上底边长与腰的关系是解本题的关键.
    20、2-x
    【解析】

    ∵x≤2,
    ∴原式=2-x.
    21、1
    【解析】
    解:解如图所示:在RtABC中,BC=3,AC=5,
    由勾股定理可得:AB2+BC2=AC2
    设旗杆顶部距离底部AB=x米,则有32+x2=52,
    解得x=1
    故答案为:1.
    本题考查勾股定理.
    22、七
    【解析】
    根据多边形的内角和公式,列式求解即可.
    【详解】
    设这个多边形是边形,根据题意得,

    解得.
    故答案为.
    本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
    23、
    【解析】
    在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.
    【详解】
    解:∵直线l1:y1=k1x+a与直线l2:y2=k2x+b的交点坐标是(1,2),
    ∴当x=1时,y1=y2=2.
    而当y1≤y2时,即时,x≤1.
    故答案为:x≤1.
    此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.
    二、解答题(本大题共3个小题,共30分)
    24、x1=5,x2=-1;(2)x1=1,x2=-4.
    【解析】
    根据一元二次方程的解法依次计算即可
    【详解】
    (x-2)2=9
    x-2=±3
    ∴x1=5 x2=-1
    (2)x(x+4)=x+4
    若 x+4≠0则 x=1
    若 x+4=0则 x=-4
    ∴x1=1 x2=-4
    熟练掌握一元二次方程的解法是解决本题的关键,难度不大
    25、(1)△PEF的边长为2;(2)PH﹣BE=1,证明见解析;(3)结论不成立,当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.
    【解析】
    (1)过P作PQ⊥BC,垂足为Q,由四边形ABCD为矩形,得到∠B为直角,且AD∥BC,得到PQ=AB,又△PEF为等边三角形,根据“三线合一”得到∠FPQ为30°,在Rt△PQF中,设出QF为x,则PF=2x,由PQ的长,根据勾股定理列出关于x的方程,求出x的值,即可得到PF的长,即为等边三角形的边长;
    (2)PH﹣BE=1,过E作ER垂直于AD,如图所示,首先证明△APH为等腰三角形,在根据矩形的对边平行得到一对内错角相等,可得∠APE=60°,在Rt△PER中,∠REP=30°,根据直角三角形中,30°角所对的直角边等于斜边的一半,由PE求出PR,由PA=PH,则PH﹣BE=PA﹣BE=PA﹣AR=PR,即可得到两线段的关系;
    (3)当若△PEF的边EF在射线CB上移动时(2)中的结论不成立,由(2)的解题思路可知当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.
    【详解】
    解:(1)过P作PQ⊥BC于Q(如图1),
    ∵四边形ABCD是矩形, ∴∠B=90°,即AB⊥BC,
    又∵AD∥BC, ∴PQ=AB=, ∵△PEF是等边三角形, ∴∠PFQ=60°,
    在Rt△PQF中,∠FPQ=30°, 设PF=2x,QF=x,PQ=,根据勾股定理得:,
    解得:x=1,故PF=2,
    ∴△PEF的边长为2;
    (2)PH﹣BE=1,理由如下:
    ∵在Rt△ABC中,AB=,BC=3, ∴由勾股定理得AC=2,
    ∴CD=AC, ∴∠CAD=30° ∵AD∥BC,∠PFE=60°, ∴∠FPD=60°, ∴∠PHA=30°=∠CAD,
    ∴PA=PH, ∴△APH是等腰三角形, 作ER⊥AD于R(如图2) Rt△PER中,∠RPE=60°, ∴PR=PE=1,
    ∴PH﹣BE=PA﹣BE=PR=1.
    (3)结论不成立,
    当1<CF<2时,PH=1﹣BE, 当2<CF<3时,PH=BE﹣1.
    本题考查相似形综合题.
    26、(1)20,500;(2)C组的人数为200,图见解析;(3)3060人
    【解析】
    (1)根据A、B两组捐款人数的比为1: 5,即可计算出a的值和B所占的百分比,进而可计算的样本容量.
    (2)根据样本容量乘以百分数可得C组的人数,在补全条形图即可.
    (3)首先计算出20至40元之间的人数的百分比,再乘以样本容量,再乘以样本容量所占的比例.
    【详解】
    .解:(1)
    因为A和B所占的比例为:
    所以B占的比例为:24%
    样本容量=;
    (2),∴C组的人数为200,
    补全“捐款人数分组统计图1”如右图所示
    (3)(人)
    答:该校4500名学生中大约有3060人捐款在20至40元之间.
    本题主要考查数据统计的条形图有关计算,关键在于计算样本容量.
    题号





    总分
    得分
    批阅人
    一周内累计的读书时间(小时)
    5
    8
    10
    14
    人数(个)
    1
    4
    3
    2

    相关试卷

    黑龙江省青龙山农场场直中学2025届九上数学开学调研模拟试题【含答案】:

    这是一份黑龙江省青龙山农场场直中学2025届九上数学开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    黑龙江省大庆市第五十五中学2025届数学九上开学调研模拟试题【含答案】:

    这是一份黑龙江省大庆市第五十五中学2025届数学九上开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届湖南省长沙市青雅丽发中学九上数学开学统考模拟试题【含答案】:

    这是一份2025届湖南省长沙市青雅丽发中学九上数学开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map