黑龙江省哈尔滨市实验学校2024年数学九上开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,若直线y=2x+k经过第一、二、三象限,则k的取值范围是( )
A.k>0B.k<0C.k≤0D.k≥0
2、(4分)某市一周日最高气温如图所示,则该市这周的日最高气温的众数是( )
A.25B.26C.27D.28
3、(4分)某种长途电话的收费方式为,接通电话的第一分钟收费a元,之后每一分钟收费b元,若某人打此种长途电话收费8元钱,则他的通话时间为
A.分钟B.分钟C.分钟D.分钟
4、(4分)如图所示,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC5O5的面积为( )
A.1cm2B.2cm2C.cm2D.cm2
5、(4分)甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是( )
A.甲的速度是70米/分B.乙的速度是60米/分
C.甲距离景点2100米D.乙距离景点420米
6、(4分)如图,在单位正方形组成的网格图中标有四条线段,其中能构成一个直角三角形三边的线段是( )
A.B.C.D.
7、(4分)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是( )
A.21微克立方米B.20微克立方米
C.19微克立方米D.18微克立方米
8、(4分)某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1100m,则隧道AB的长度为( )
A.3300mB.2200mC.1100mD.550m
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为_____.
10、(4分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=_____度.
11、(4分)一次函数y=-x+4的图像是由正比例函数 ____________ 的图像向 ___ (填“上”或 “下”)平移 __ 个单位长度得到的一条直线.
12、(4分)在正方形ABCD中,对角线AC、BD相交于点O.如果AC =,那么正方形ABCD的面积是__________.
13、(4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,AM是△ABC的中线,D是线段AM的中点,AM=AC,AE∥BC.求证:四边形EBCA是等腰梯形.
15、(8分)计算:( +)×
16、(8分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
(1)求证:四边形BFCE是平行四边形;
(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.
17、(10分)解不等式组:,并把它的解集在数轴上表示出来.
18、(10分)计算下列各题
(1)
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了100米,则山坡的高度BC为_____米.
20、(4分)有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的分式方程有正实数解的概率为________.
21、(4分)如图,在矩形ABCD中,AC,BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数为____________.
22、(4分)2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为_____.
23、(4分)如图,四边形ABCD、DEFG都是正方形,AB与CG交于点下列结论:;;;;其中正确的有______;
二、解答题(本大题共3个小题,共30分)
24、(8分)某小区有一块四边形空地ABCD,如图所示,现计划在这块地上种植每平方米60元的草坪用以美化环境,施工人员测得(单位:米):AB=3,BC=4,CD=12,DA=13,∠B=90°,求小区种植这种草坪需多少钱?
25、(10分)如图,四边形ABCD是菱形,AC=24, BD=10,DH⊥AB 于点H,求菱形的面积及线段DH的长.
26、(12分)如图,直线和相交于点C,分别交x轴于点A和点B点P为射线BC上的一点。
(1)如图1,点D是直线CB上一动点,连接OD,将沿OD翻折,点C的对应点为,连接,并取的中点F,连接PF,当四边形AOCP的面积等于时,求PF的最大值;
(2)如图2,将直线AC绕点O顺时针方向旋转α度,分别与x轴和直线BC相交于点S和点R,当是等腰三角形时,直接写出α的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据一次函数的性质求解.
【详解】
一次函数的图象经过第一、二、三象限,那么.故选A.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
2、A
【解析】
分析:根据众数是一组数据中出现次数最多的那个数求解即可.
详解: ∵25出现了3次,出现的次数最多,
∴周的日最高气温的众数是25.
故选A.
点睛:本题考查了众数的定义,熟练掌握一组数据中出现次数最多的那个数是众数是解答本题的关键. 众数可能没有,可能有1个,也可能有多个.
3、C
【解析】
解决此题要清楚一分钟收费a元,则一分钟后共打了分.再根据题意求出结果.
【详解】
首先表示一分钟后共打了分,
则此人打长途电话的时间共是+1= 分。
故选C.
本题考查列代数式,根据题意列出正确的分式是解题关键.
4、D
【解析】
根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5的面积.
【详解】
解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1= S1,
又S△ABO1=S矩形,∴S1=S矩形=5=;
设ABC2O2为平行四边形为S2,∴S△ABO2=S2,
又S△ABO2=S矩形,∴S2=S矩形==;
,…,
同理:设ABC5O5为平行四边形为S5,S5==.
故选:D.
此题综合考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.
5、D
【解析】
根据图中信息以及路程、速度、时间之间的关系一一判断即可.
【详解】
甲的速度==70米/分,故A正确,不符合题意;
设乙的速度为x米/分.则有,660+24x-70×24=420,
解得x=60,故B正确,本选项不符合题意,
70×30=2100,故选项C正确,不符合题意,
24×60=1440米,乙距离景点1440米,故D错误,
故选D.
本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
6、C
【解析】
设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度的平方(因为逆定理也要计算平方),再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.
【详解】
设小正方形的边长为1,
则AB2=22+22=8,CD2=22+42=20,
EF2=12+22=5,GH2=22+32=13.
因为AB2+EF2=GH2,
所以能构成一个直角三角形三边的线段是AB、EF、GH.
故选C.
本题考查勾股定理, 勾股定理的逆定理,能熟练运用勾股定理的计算公式进行计算和运用勾股定理的逆定理进行判断是解决本题的关键.
7、B
【解析】
按大小顺序排列这组数据,最中间那个数是中位数.
【详解】
解:从小到大排列此数据为:18,18,18,1,21,29,30,位置处于最中间的数是:1,
所以组数据的中位数是1.
故选B.
此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
8、B
【解析】
∵D,E为AC和BC的中点,
∴AB=2DE=2200m,
故选:B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(,0)
【解析】
【分析】根据一次函数解析式求出点A、点B的坐标,再由中点坐标公式求出点C、点D的坐标,根据对称的性质找出点D关于x轴的对称点D′的坐标,结合C、D′的坐标求出直线CD′的解析式,令y=0求出x的值,从而得到点P的坐标.
【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,
如图,
令y=x+4中x=0,则y=4,
∴点B的坐标为(0,4),
令y=x+4中y=0,则x+4=0,解得:x=-6,
∴点A的坐标为(-6,0),
∵点C、D分别为线段AB、OB的中点,
∴点C(-3,2),点D(0,2),
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,-2),
设直线CD′的解析式为y=kx+b,
∵直线CD′过点C(-3,2),D′(0,-2),
∴有,解得:,
∴直线CD′的解析式为y=-x-2,
令y=0,则0=-x-2,解得:x=-,
∴点P的坐标为(-,0),
故答案为(-,0).
【点睛】本题考查了待定系数法、一次函数以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式,解决此类问题时找点的坐标,常利用待定系数法求出函数解析式.
10、1
【解析】
分析:连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.
详解:连接AC,
∵四边形ABCD是矩形,
∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,
∴∠E=∠DAE,
又∵BD=CE,
∴CE=CA,
∴∠E=∠CAE,
∵∠CAD=∠CAE+∠DAE,
∴∠E+∠E=30°,即∠E=1°,
故答案为1.
点睛:本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.
11、y=-x, 上, 4
【解析】
分析:根据函数图象平移的规则“上加下减”,即可得出将y=-x的函数图象向上平移4个单位即可得到函数y=-x+4的图象,此题得解.
详解:根据图形平移的规则“上加下减”,即可得出:
将y=−x的函数图象向上平移4个单位即可得到函数y=−x+4的图象.
故答案为:y=−x;上;4.
点睛:本题主要考查了一次函数图像与几何变换.关键在于牢记函数图像的平移规则.
12、1
【解析】
根据正方形的对角线将正方形分为两个全等的等腰直角三角形,AC是该三角形的斜边,由此根据三角形面积的计算公式得到正方形的面积.
【详解】
正方形ABCD的一条对角线将正方形分为两个全等的等腰直角三角形,即AC是等腰直角三角形的斜边,
∵AC=
∴正方形ABCD的面积两个直角三角形的面积和,
∴正方形ABCD的面积=,
故答案为:1.
此题考查正方形的性质,等腰直角三角形的性质,正确掌握正方形的性质是解题的关键.
13、1 .
【解析】
试题分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出ED=BC=1.故答案为1.
考点: 三角形中位线定理.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
根据三角形判定定理先证明三角形ADE与三角形MDC全等,得出AE=MC=MB,得出四边形AEBM是平行四边形,最后可证明四边形EBCA是等腰梯形.
证明:∵AE∥BC,
∴∠AED=∠MCD,
∵D是线段AM的中点,
∴AD=MD,
在△ADE和△MDC中,,
∴△ADE≌△MDC(AAS),
∴AE=MC,
∵AM是△ABC的中线,
∴MB=MC,
∴AE=MB,
∵AE∥MB,
∴四边形AEBM是平行四边形,
∴BE=AM,
∵AM=AC,
∴BE=AC,
∵AE∥BC,BE与AC不平行,
∴四边形EBCA是梯形,
∴梯形EBCA是等腰梯形.
本题考查学生对三角形判定定理的运用熟练程度,通过先运用三角形全等判定理找出AE=MC=MB是解决此题的关键.
15、6+2.
【解析】
先化简二次根式,再利用乘法分配律计算可得.
【详解】
原式=(2+2)×
=6+2.
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.
16、(1)证明见试题解析;(2)1.
【解析】
试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;
(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.
试题解析:(1)∵AB=DC,∴AC=DB,
在△AEC和△DFB中,∴△AEC≌△DFB(SAS),
∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;
(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,
∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,
∴当BE=1时,四边形BFCE是菱形,
故答案为1.
【考点】
平行四边形的判定;菱形的判定.
17、,解集在数轴上表示如图见解析.
【解析】
先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.
【详解】
解:由①得:
由②得:
不等式组解集为
解集在数轴上表示如图:
本题考查了解一元一次不等式组的应用,解此题的关键是能求出不等式组的解集,难度适中.
18、 (1)1;(2) -12+4.
【解析】
(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;
(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.
【详解】
(1)原式=(4 -2)÷2
=2÷2
=1;
(2)原式=5-3-(12-4+2)
=2-14+4
=-12+4.
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.
【详解】
由题意可得:AB=100m,∠A=30°,
则BC=AB=1(m).
故答案为:1.
此题主要考查了解直角三角形的应用,正确得出BC与AB的数量关系是解题关键.
20、.
【解析】
解分式方程,得到解,并让解大于零,然后根据概率公式求解.
【详解】
解:解分式方程
得:且x≠2
令>0 且不等于2,则符合题意得卡片上的数字有:-2,0 ,4;
∴方程的解为正实数的概率为: ,故答案为.
本题考查了概率公式和分式方程的求解,其关键是确定满足题意卡片上的数字..
21、
【解析】
由矩形ABCD,得到OA=OB,根据AE平分∠BAD,得到等边三角形OAB,推出AB=OB,求出∠OAB、∠OBC的度数,根据平行线的性质和等角对等边得到OB=BE,根据三角形的内角和定理即可求出答案.
【详解】
解:∵四边形ABCD是矩形,
∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,
∴OA=OB,∠DAE=∠AEB,
∵AE平分∠BAD,
∴∠BAE=∠DAE=45°=∠AEB,
∴AB=BE, ∵∠CAE=15°,
∴∠DAC=45°-15°=30°,
∠BAC=60°,
∴△BAO是等边三角形,
∴AB=OB,∠ABO=60°,
∴∠OBC=90°-60°=30°,
∵AB=OB=BE,
∴∠BOE=∠BEO=
故答案为75°.
本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,平行线的性质,角平分线的性质,等腰三角形的判定等知识点,解此题的关键是求出∠OBC的度数和求OB=BE.
22、1
【解析】
根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值,根据(a+b)2=a2+b2+2ab=c2+2ab即可求解.
【详解】
∵大正方形的面积是13,∴c2=13,∴a2+b2=c2=13,
∵直角三角形的面积是=3,
又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=1.
故答案为1.
本题考查了勾股定理以及完全平方公式,正确表示出直角三角形的面积是解题的关键.
23、
【解析】
根据正方形的性质可得,,,然后求出,再利用“边角边”证明和全等,根据全等三角形对应边相等可得,判定正确;根据全等三角形对应角相等可得,再求出,然后求出,判定正确;根据直角三角形斜边上的中线等于斜边的一半可得,判定正确;求出点D、E、G、M四点共圆,再根据同弧所对的圆周角相等可得,判定正确;得出,判定GE错误.
【详解】
四边形ABCD、DEFG都是正方形,
,,,
,
即,
在和中,
,
≌,
,故正确;
,
,
,
,故正确;
是正方形DEFG的对角线的交点,
,
,故正确;
,
点D、E、G、M四点共圆,
,故正确;
,
,
不成立,故错误;
综上所述,正确的有.
故答案为.
本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,以及四点共圆,熟练掌握各性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、小区种植这种草坪需要2160元.
【解析】
仔细分析题目,需要求得四边形的面积才能求得结果.连接AC,在直角三角形ABC中可求得AC的长,由AC、CD、AD的长度关系可得三角形ACD为直角三角形,AD为斜边;由此看,四边形ABCD由Rt△ABC和Rt△ACD构成,则容易求解.
【详解】
如图,连接AC,
∵在△ABC中,AB=3,BC=4,∠B=90°,
∴AC==5,
又∵CD=12,DA=13,
∴AD2=AC2+CD2=169,
∴∠ACD=90°,
∴S四边形ABCD=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36(平方米),
∴60×36=2160(元),
答:小区种植这种草坪需要2160元.
本题考查了勾股定理以及其逆定理的应用,熟练掌握是解题的关键.
25、
【解析】
先根据菱形的面积等于对角线乘积的一半求出菱形的面积,然后再根据勾股定理求出菱形的边长,利用菱形面积的以一求解方法,边长乘高即可求得DH的长.
【详解】
在菱形ABCD中,AC⊥BD,
∵AC=24,BD=10,
∴AO=AC=12,BO=BD=5,
S菱形ABCD =,
∴AB==13,
∵S菱形ABCD =AB·DH=120,
∴DH=.
本题考查了菱形的性质、勾股定理、菱形的面积等,注意菱形的面积等于对角线乘积的一半,也等于底乘高.
26、(1)PF的最大值是;(2)的度数:,,,.
【解析】
(1)设P(m,-m+6),连接OP.根据S四边形AOCP=S△AOP+S△OCP=,构建方程求出点P坐标,取OB的中点Q,连接QF,QP,求出FQ,PQ,根据PF≤PQ+QF求解即可.
(2)分四种情形:①如图2-1中,当RS=RB时,作OM⊥AC于M.②如图2-2中,当BS=BR时,③如图2-3中,当SR=SB时,④如图2-4中,当BR=BS时,分别求解即可解决问题.
【详解】
解:(1)在中,当时,;
当时,﹒
∴,
设,连接OP
∴
∴
∴ ∴
取OB的中点Q,连接FQ,PQ
在中,当时,
∴ ∴
又∵点F是的中点,
∴
∵
所以PF的最大值是
(2)①如图2-1中,当RS=RB时,作OM⊥AC于M.
∵tan∠OAC==,
∴∠OAC=60°,
∵OC=OB=6,
∴∠OBC=∠OCB=45°,
∵∠OM′S=∠BRS=90°,
∴OM′∥BR,
∴∠AOM′=∠OBC=45°,
∵∠AOM=30°,
∴α=45°-30°=15°.
②如图2-2中,当BS=BR时,易知∠BSR=22.5°,
∴∠SOM′=90°-22.5°=67.5°,
∴α=∠MOM′=180°-30°-67.5°=82.5°
③如图2-3中,当SR=SB时,α=180°-30°=150°.
④如图2-4中,当BR=BS时,α=150°+(90°-67.5°)=172.5°.
综上所述,满足条件的α的值为15°或82.5°或150°或172.5°.
本题属于一次函数综合题,考查了旋转变换,四边形的面积,最短问题等知识,解题的关键是学会利用两点之间线段最短解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.
题号
一
二
三
四
五
总分
得分
批阅人
天数
3
1
1
1
1
PM2.5
18
20
21
29
30
黑龙江省哈尔滨市尚志市2024-2025学年数学九上开学统考试题【含答案】: 这是一份黑龙江省哈尔滨市尚志市2024-2025学年数学九上开学统考试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
黑龙江省哈尔滨市呼兰区2024-2025学年九上数学开学统考试题【含答案】: 这是一份黑龙江省哈尔滨市呼兰区2024-2025学年九上数学开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届黑龙江省哈尔滨市双城区九上数学开学经典模拟试题【含答案】: 这是一份2025届黑龙江省哈尔滨市双城区九上数学开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。