黑龙江省安达市吉星岗镇第一中学2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列从左到右的变形是分解因式的是( )
A.B.
C.D.
2、(4分)下列各数中,是不等式的解的是
A.B.0C.1D.3
3、(4分)以下列长度(单位:cm)为边长的三角形是直角三角形的是( )
A.3,4,5B.1,2,3C.5,7,9D.6,10,12
4、(4分)如图,字母M所代表的正方形的面积是( )
A.4B.5C.16D.34
5、(4分)如图,直线的图象如图所示.下列结论中,正确的是( )
A.B.方程的解为;
C.D.若点A(1,m)、B(3,n)在该直线图象上,则.
6、(4分)如果分式有意义,那么的取值范围是( )
A.B.C.D.
7、(4分)已知二次函数(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为( )
A.或1B.或1C.或D.或
8、(4分)以下四组数中的三个数作为边长,不能构成直角三角形的是( )
A.1,,B.5,12,13C.32,42,52D.8,15,17.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在△ABC中,AB=10,CA=8,BC=6,∠BAC的平分线与∠BCA的平分线交于点I,且DI∥BC交AB于点D,则DI的长为____.
10、(4分)若分式方程无解,则__________.
11、(4分)如图,点A、B都在反比例函数y=(x>0)的图像上,过点B作BC∥x轴交y轴于点C,连接AC并延长交x轴于点D,连接BD,DA=3DC,S△ABD=1.则k的值为_______.
12、(4分)方程x3=8的根是______.
13、(4分)若n边形的每个内角都是,则________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.
(1)求证:△AOE≌△COF;
(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由
15、(8分)先化简,再求值,其中.
16、(8分)数学活动课上,老师提出了一个问题:如图1,A、B两点被池塘隔开,在AB外选一点,连接AC和BC,怎样测出A、B两点的距离?
(活动探究)学生以小组展开讨论,总结出以下方法:
⑴如图2,选取点C,使AC=BC=a,∠C=60°;
⑵如图3,选取点C,使AC=BC=b,∠C=90°;
⑶如图4,选取点C,连接AC,BC,然后取AC、BC的中点D、E,量得DE=c…
(活动总结)
(1)请根据上述三种方法,依次写出A、B两点的距离.(用含字母的代数式表示)并写出方法⑶所根据的定理.AB=________,AB=________,AB=________.定理:________.
(2)请你再设计一种测量方法,(图5)画出图形,简要说明过程及结果即可.
17、(10分)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面.求旗杆的高度.
18、(10分)某公司招聘职员两名,对甲乙丙丁四名候选人进行笔试和面试,各项成绩均为100分,然后再按笔试70%、面试30%计算候选人综合成绩(满分100分)各项成绩如下表所示:
(1)直接写出四名候选人面试成绩中位数;
(2)现得知候选人丙的综合成绩为87.2分,求表中x的值;
(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要聘请的前两名的人选.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)汽车行驶前油箱中有汽油52公升,已知汽车每百公里耗油8公升,油箱中的余油量Q(公升)(油箱中剩余的油量不能少于4公升)与它行驶的距离s(百公里)之间的函数关系式为_____(注明s的取值范围).
20、(4分)已知平行四边形的周长是24,相邻两边的长度相差4,那么相邻两边的长分别是_____.
21、(4分)如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE垂直平分AB,则∠C的度数为_____.
22、(4分)已知a=﹣,b=+,求a2+b2的值为_____.
23、(4分)如图,,,,,的长为________;
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知点,分别是平行四边形的边,上的中点,且∠=90°.
(1)求证:四边形是菱形;
(2)若=4,=5,求菱形的面积.
25、(10分)如图,在平面直角坐标系中,已知点A(-3,0),B(0,-1),C(0,)三点.
(1)求直线AB的解析式.
(2)若点D在直线AB上,且DB=DC,尺规作图作出点D(保留作图痕迹),并求出点D的坐标.
26、(12分)如图所示,已知一次函数的图像直线AB经过点(0,6)和点(-2,0).
(1)求这个函数的解析式;
(2)直线AB与x轴交于点A,与y轴交于点B,求△AOB的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据把一个多项式写成几个整式积的形式叫做因式分解对各选项分析判断后利用排除法求解.
【详解】
A. ,故错误;
B. ,等式右边不是整式积的形式,故不是分解因式,故本选项错误;
C. ,符合因式分解的意义,是因式分解,故本选项正确;
D. ,故错误.
故选C.
本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,熟记因式分解的定义是解题的关键.
2、D
【解析】
判断各个选项是否满足不等式的解即可.
【详解】
满足不等式x>2的值只有3,
故选:D.
本题考查不等式解的求解,关键是明白解的取值范围.
3、A
【解析】
利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.
【详解】
A. 因为3+4=5,所以三条线段能组成直角三角形;
B. 因为1+2≠3,所以三条线段不能组成直角三角形;
C. 因为5+7≠9,所以三条线段不能组成直角三角形;
D. 因为6+10≠12,所以三条线段不能组成直角三角形;
故选:A.
此题考查勾股定理的逆定理,难度不大
4、C
【解析】
分析:根据勾股定理:直角三角形斜边的平方减直角边的平方等于另一直角边的平方,可得答案.
详解:由勾股定理,得:M=25﹣9=1.
故选C.
点睛:本题考查了勾股定理,利用了勾股定理:两直角边的平方和等于斜边的平方.
5、B
【解析】
根据函数图象可直接确定k、b的符号判断A、C,根据图象与x轴的交点坐标判断选项B,根据函数性质判断选项D.
【详解】
由图象得:k<0,b>0,∴A、C都错误;
∵图象与x轴交于点(1,0),∴方程的解为,故B正确;
∵k<0,∴y随着x的增大而减小,由1<3得m>n,故D错误,
故选:B.
此题考查一次函数的图象,一次函数的性质,正确理解图象得到对应的信息是解题的关键.
6、D
【解析】
根据分式有意义,分母不等于0列不等式求解即可.
【详解】
解:由题意得,x+1≠0,
解得x≠-1.
故选:D.
本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;
(2)分式有意义⇔分母不为零;
(3)分式值为零⇔分子为零且分母不为零.
7、A
【解析】
首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.
【详解】
依题意知a>0,>0,a+b﹣2=0,
故b>0,且b=2﹣a,
a﹣b=a﹣(2﹣a)=2a﹣2,
于是0<a<2,
∴﹣2<2a﹣2<2,
又a﹣b为整数,
∴2a﹣2=﹣1,0,1,
故a=,1,,
b=,1,,
∴ab=或1,故选A.
根据开口和对称轴可以得到b的范围.按照左同右异规则.当对称轴在y轴的左侧,则a,b符号相同,在右侧则a,b符号相反.
8、C
【解析】
分别求出两小边的平方和和长边的平方,看看是否相等即可.
【详解】
A、∵12+()2=()2,
∴以1,,为边能组成直角三角形,故本选项不符合题意;
B、∵52+122=132,
∴以5、12、13为边能组成直角三角形,故本选项不符合题意;
C、∵92+162≠52,
∴以32,42,52为边不能组成直角三角形,故本选项符合题意;
D、∵82+152=172,
∴8、15、17为边能组成直角三角形,故本选项不符合题意;
故选C.
本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键,注意:如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2.5
【解析】
根据题意,△ABC是直角三角形,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,由点I是内心,则,利用等面积的方法求得,然后利用平行线分线段成比例,得,又由BD=DI,把数据代入计算,即可得到DI的长度.
【详解】
解:如图,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,
在△ABC中,AB=10,CA=8,BC=6,
∴,
∴△ABC是直角三角形,即AC⊥BC,
∵DI∥BC,
∴DE⊥AC,
∵∠BAC的平分线与∠BCA的平分线交于点I,
∴点I是三角形的内心,则,
在△ABC中,根据等面积的方法,有
,设
即,
解得:,
∵DI∥BC,
∴,∠DIB=∠CBI=∠DBI,
∴DI=BD,
∴,
解得:BD=2.5,
∴DI=2.5;
故答案为:2.5.
本题考查了三角形的角平分线性质,平行线分线段成比例,以及等面积法计算高,解题的关键是利用等面积法求得内心到各边的距离,以及掌握平行线分线段成比例的性质.
10、1
【解析】
先把m看作已知,解分式方程得出x与m的关系,再根据分式方程无解可确定方程的增根,进一步即可求出m的值.
【详解】
解:在方程的两边同时乘以x-1,得 ,
解得.
因为原方程无解,所以原分式方程有增根x=1,即,解得m=1.
故答案为1.
本题考查了分式方程的解法和分式方程的增根,正确理解分式方程无解与其增根的关系是解题的关键.
11、2.
【解析】
过点A作AN⊥x轴交x轴于点N,交BC于点M,设B(x,y),则BC=x,MN=y,由平行线分线段成比例定理得AM=2y,根据 =1 ,即可求得xy=k的值.
【详解】
解:如图,过点A作AN⊥x轴交x轴于点N,交BC于点M,设B(x,y),则BC=x,MN=y,
∵BC∥x轴,DA=3DC,
∴AN=3MN,AM=2MN
∴MN=y,AM =2y
∵ ,S△ABD=1
∴ ,
∴xy=2,
∵反比例函数y=(x>0),
∴k=xy=2.
故答案为:2.
本题考查平行线分线段成比例定理,反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
12、2
【解析】
直接进行开立方的运算即可.
【详解】
解:∵x3=8,
∴x==2.
故答案为:2.
本题考查了求一个数的立方根.
13、1
【解析】
根据内角度数先算出外角度数,然后再根据外角和计算出边数即可.
【详解】
解:∵n边形的每个内角都是120°,
∴每一个外角都是180°-120°=10°,
∵多边形外角和为310°,
∴多边形的边数为310÷10=1,
故答案为:1.
此题主要考查了多边形的内角和外角,关键是掌握多边形的外角和等于310度.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)是菱形;
【解析】
根据菱形判定定理:对角线互相垂直且平分的四边形是菱形
【详解】
(1) 证明:∵四边形ABCD是平行四边形,
∴AD∥BC,∴∠EAO=∠FCO,
∵O是OA的中点,
∴OA=OC,
在△AOE和△COF中,∠EAO=∠FCO OA=OC ∠AOE=∠COF ,
∴△AOE≌△COF(ASA);
(2) EF⊥AC时,四边形AFCE是菱形;
由(1)中△AOE≌△COF,得
AE=CF,OE=OF,
又∵OA=OC,EF⊥AC
∴四边形AFCE是菱形.
此题主要考查全等三角形的判定和菱形判定定理,熟练能掌握即可轻松解题.
15、
【解析】
先把分式通分,把除法转换成乘法,再化简,然后进行计算
【详解】
解:
=
=·
=x-1
当x=+1时,原式=+1-1=
故答案为
本题考查了分式的混合运算-化简求值,是中考常考题,解题关键在于细心计算.
16、见解析
【解析】
试题分析:(1)分别利用等边三角形的判定方法以及直角三角形的性质和三角形中位线定理得出答案;
(2)直接利用利用勾股定理得出答案.
解:(1)∵AC=BC=a,∠C=60°,
∴△ABC是等边三角形,
∴AB=a;
∵AC=BC=b,∠C=90°,
∴AB=b,
∵取AC、BC的中点D、E,
∴DE∥AB,DE=AB,
量得DE=c,则AB=2c(三角形中位线定理);
故答案为a,b,2c,三角形中位线定理;
(2)方法不唯一,如:图5,选取点C,
使∠CAB=90°,AC=b,BC=a,
则AB=.
【点评】此题主要考查了应用设计与作图,正确应用勾股定理是解题关键.
17、1米
【解析】
设旗杆的高度为x米,则绳长为(x+1)米,根据勾股定理即可得出关于x的一元一次方程,解之即可得出结论.
【详解】
设旗杆的高度为x米,则绳长为(x+1)米,
根据题意得:(x+1)2=x2+52,即2x-24=0,
解得:x=1.
答:旗杆的高度是1米.
此题考查勾股定理的应用,解一元一次方程,根据勾股定理列出关于x的一元一次方程是解题的关键.
18、(1)89分;(2)86;(3)甲的综合成绩: 89.4分,乙的综合成绩: 86.4分,丁的综合成绩为87.4分,以综合成绩排序确定所要招聘的前两名的人选是:甲、丁.
【解析】
(1)根据中位数的意义,将四个数据排序后,处在第2、3位的两个数的平均数即为中位数,
(2)根据加权平均数的计算方法,列方程求解即可,
(3)依据加权平均数的计算方法,分别计算甲、乙、丁的综合成绩,最后比较产生前两名的候选人.
【详解】
解:(1)面试成绩排序得:86,88,90,92,处在第2、3位两个数的平均数为(88+90)÷2=89,因此中位数是89,
答:四名候选人的面试成绩的中位数是89分;
(2)由题意得:70%x+90×30%=87.2,
解得:x=86,
答:表格中x的值为86;
(3)甲的综合成绩:90×70%+88×30%=89.4分,乙的综合成绩:84×70%+92×30%=86.4分,
丁的综合成绩为:88×70%+86×30%=87.4分,
处在综合成绩前两位的是:甲、丁.
∴以综合成绩排序确定所要招聘的前两名的人选是:甲、丁.
本题考查中位数、加权平均数的计算方法,掌握中位数的概念、加权平均数的计算公式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、Q=52﹣8s(0≤s≤6).
【解析】
求余量与行驶距离之间的关系,每行使百千米耗油8升,则行驶s百千米共耗油8s,所以余量为Q=52﹣8s,根据油箱中剩余的油量不能少于4公升求出s的取值范围.
【详解】
解:∵每行驶百千米耗油8升,
∴行驶s百公里共耗油8s,
∴余油量为Q=52﹣8s;
∵油箱中剩余的油量不能少于4公升,
∴52﹣8s≥4,解得s≤6,
∴s的取值范围为0≤s≤6.
故答案为:Q=52﹣8s(0≤s≤6).
本题考查一次函数在是实际生活中的应用,在求解函数自变量范围的时候,一定要考虑变量在本题中的实际意义.
20、4和1
【解析】
设短边为x,则长边为x+4,再利用周长为24作等量关系,即可列方程求解.
【详解】
∵平行四边形周长为24,
∴相邻两边的和为12,
∵相邻两边的差是4,
设短边为x,则长边为x+4
∴x+4+x=12
∴x=4
∴两边的长分别为:4,1.
故答案为:4和1;
主要考查了平行四边形的性质,即平行四边形的对边相等这一性质,并建立适当的方程是解题的关键.
21、84°.
【解析】
根据线段垂直平分线的性质得到DA=DB,根据等腰三角形的性质得到∠DAB=∠B=32°,根据角平分线的定义、三角形内角和定理计算即可.
【详解】
解:∵DE垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=32°,
∵AD是∠BAC的平分线,
∴∠CAD=∠DAB=32°,
∴∠C=180°−32°×3=84°,
故答案为84°.
本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
22、1
【解析】
把已知条件代入求值.
【详解】
解:原式=
=.
故答案是:1.
直接代入即可,也可先求出a+b、ab的值,原式=(a+b)2﹣2ab,再整体代入.
23、12
【解析】
根据相似三角形的性质列比例式求解即可.
【详解】
∵,,,,
∴,
∴,
∴AC=12.
故答案为:12.
本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)10.
【解析】
(1)由平行四边形的性质可得BC=AD,BC∥AD,由中点的性质可得EC=AF,可证四边形AECF为平行四边形,由直角三角形的性质可得AE=EC,即可得结论;
(2)可求S△ABC=AB×AC=10,即可求菱形AECF的面积.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC.
∵点,分别是边,上的中点
∴AF∥EC ,AF=EC
∴四边形AECF是平行四边形.
在Rt△ABC中,∠BAC=90°,点E是BC边的中点,
∴AE =BC=CE
∴平行四边形AECF是菱形.
(2)∵∠BAC=90°,AB=5,AC=4,
∴S△ABC=AB×AC=10
∵点E是BC的中点,
∴S△AEC=S△ABC=5
∵四边形AECF是菱形
∴四边形AECF的面积=2S△AEC=10.
本题考查了菱形的判定和性质,直角三角形的性质,三角形的面积公式,熟练运用菱形的判定是本题的关键.
25、(1)y=x-1;(2)画图见解析,点D的坐标为(,).
【解析】
(1)设直线AB解析式为:y=kx+b,把A,B坐标代入,求解即可;
(2)按照题目要求画图即可,根据题意可得点D在线段BC垂直平分线上,据此可求出D点坐标.
【详解】
(1)设直线AB解析式为:y=kx+b,
代入点A(-3,0),B(0,-1),
得:,
解得,
∴直线AB解析式为:y=x-1;
(2)如图所示:
∵B(0,-1),C(0,),DB=DC,
∴点D在线段BC垂直平分线上,
∴D的纵坐标为,
又∵点D在直线AB上,
令y=,得x=,
∴点D的坐标为(,).
本题考查了用待定系数法求一次函数解析式,尺规作图,垂直平分线的性质,掌握知识点是解题关键.
26、 (1)一次函数的解析式为:y=3x+6;(2)△AOB的面积=×6×2=6.
【解析】
(1)设一次函数的解析式为y=kx+b(k≠0),再把点(0,6)和点(-2,0)代入求出k、b的值即可;
(2)求出直线与坐标轴的交点,再利用三角形的面积公式即可得出结论.
【详解】
(1)设一次函数的解析式为y=kx+b(k≠0),
∵一次函数的图象经过点点(0,6)和点(-2,0),
∴,
解得,
∴一次函数的解析式为:y=3x+6;
(2)∵一次函数的解析式为y=3x+6,
∴与坐标轴的交点为(0,6)和(-2,0),
∴△AOB的面积=×6×2=6.
本题考查待定系数法求一次函数解析式和一次函数图象上点的坐标特征,解题的关键是掌握待定系数法求一次函数解析式.
题号
一
二
三
四
五
总分
得分
批阅人
候选人
笔试成绩
面试成绩
甲
90
88
乙
84
92
丙
x
90
丁
88
86
138,黑龙江省绥化市安达市吉星岗镇第一中学2023-2024学年七年级下学期月考数学试题: 这是一份138,黑龙江省绥化市安达市吉星岗镇第一中学2023-2024学年七年级下学期月考数学试题,共18页。试卷主要包含了选择题.,填空题.,解答题.等内容,欢迎下载使用。
黑龙江省绥化市安达市吉星岗镇第一中学2023-2024学年七年级下学期开学考试数学试题: 这是一份黑龙江省绥化市安达市吉星岗镇第一中学2023-2024学年七年级下学期开学考试数学试题,共16页。试卷主要包含了选择题.,填空题.,简答题.等内容,欢迎下载使用。
95,黑龙江省绥化市安达市吉星岗镇第一中学2023-2024学年七年级下学期开学考试数学试题: 这是一份95,黑龙江省绥化市安达市吉星岗镇第一中学2023-2024学年七年级下学期开学考试数学试题,共3页。试卷主要包含了13,23等内容,欢迎下载使用。