河南省郑州市第二中学2025届九年级数学第一学期开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,在菱形ABCD中,∠A=60°,AB=2,E,F两点分别从A,B两点同时出发,以相同的速度分别向终点B,C移动,连接EF,在移动的过程中,EF的最小值为( )
A.1B.C.D.
2、(4分)对角线相等且互相平分的四边形是( )
A.一般四边形B.平行四边形C.矩形D.菱形
3、(4分)一次函数y=kx﹣6(k<0)的图象大致是( )
A.B.
C.D.
4、(4分)下列函数中,y总随x的增大而减小的是( )
A.y=4xB.y=﹣4xC.y=x﹣4D.y=x2
5、(4分)计算结果正确的是( )
A.B.C.D.
6、(4分)不等式的解集在数轴上表示正确的是( )
A. B. C. D.
7、(4分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是黄金分割比(黄金分割比0.618)著名的“断臂维纳斯”便是如此.此外最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是黄金分割比.若某人满足上述两个黄金分割比例,且腿长为103cm,头顶至脖子下端的长度为25cm,则其身高可能是( )
A.165cmB.170cmC.175cmD.180cm
8、(4分)使得式子有意义的x的取值范围是( )
A.x≥4B.x>4C.x≤4D.x<4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为 .
10、(4分)函数自变量的取值范围是_________________.
11、(4分)如图,在四边形中,交于E,若,则的长是_____________
12、(4分)将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为_____.
13、(4分)化简的结果为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)在图1,图2中,点E是矩形ABCD边AD上的中点,请用无刻度的直尺按下列要求画图(保留画图痕迹,不写画法)
(1)在图1中,以BC为一边画△PBC,使△PBC的面积等于矩形ABCD的面积.
(2)在图2中,以BE、ED为邻边画▱BEDK.
15、(8分)解方程:(1);(2);(3)x3290
16、(8分)为积极响应“弘扬传统文化”的号召,某学校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:
请根据调查的信息分析:
(1)求活动启动之初学生“一周诗词诵背数量”的中位数;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
17、(10分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求证:四边形ABCD是矩形;
(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.
18、(10分)如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,AE∥BD,OE与AB交于点F.
(1)试判断四边形AEBO的形状,并说明理由;
(2)若OE=10,AC=16,求菱形ABCD的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若二次根式有意义,则的取值范围是______________.
20、(4分)两个面积都为的正方形纸片,其中一个正方形的顶点与另一个正方形对角线的交点重合,则两个正方形纸片重叠部分的面积为__________.
21、(4分)如图,在平面直角坐标系中,已知,,是轴上的一条动线段,且,当取最小值时,点坐标为______.
22、(4分)在平面直角坐标系中,函数()与()的图象相交于点M(3,4),N(-4,-3),则不等式的解集为__________.
23、(4分)一次函数的图象与轴的交点坐标是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某商店用1000元人民币购进水果销售,过了一段时间又用2800元购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.
(1)求该商店第一次购进水果多少千克?
(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的50千克按照标价半价出售.售完全部水果后,利润不低于3100元,则最初每千克水果的标价是多少?
25、(10分)某商贩出售一批进价为l元的钥匙扣,在销售过程中发现钥匙扣的日销售单价x(元)与日销售量y(个)之间有如下关系:
(1)根据表中数据在平面直角坐标系中,描出实数对(x,y)对应的点;
(2)猜想并确定y与x的关系式,并在直角坐标系中画出x>0时的图像;
(3)设销售钥匙扣的利润为T元,试求出T与x之间的函数关系式:若商贩在钥匙扣售价不超过8元的前提下要获得最大利润,试求销售价x和最大利润T.
26、(12分)如图,在矩形ABCD中,AE平分∠BAD,交BC于点E,过点E作EF⊥AD于点F,求证:四边形ABEF是正方形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
连接DB,作DH⊥AB于H,如图,∵四边形ABCD为菱形,∴AD=AB=BC=CD,而∠A=60°,∴△ABD和△BCD都是等边三角形,∴∠ADB=∠DBC=60°,AD=BD,在Rt△ABH中,AH=1,AD=2,∴DH=,在△ADE和△BDF中,,∴△ADE≌△BDF,∴∠2=∠1,DE=DF,∴∠1+∠BDE=∠2+∠BDE=∠ADB=60°,∴△DEF为等边三角形,∴EF=DE,而当E点运动到H点时,DE的值最小,其最小值为,∴EF的最小值为.故选D.
2、C
【解析】
由对角线互相平分,可得此四边形是平行四边形;又由对角线相等,可得是矩形;
【详解】
∵四边形的对角线互相平分,
∴此四边形是平行四边形;
又∵对角线相等,
∴此四边形是矩形;
故选B.
考查矩形的判定,常见的判定方法有:
1.有一个角是直角的平行四边形是矩形.
2.对角线相等的平行四边形是矩形.
3.有三个角是直角的四边形是矩形.
3、D
【解析】
一次函数y=kx+b中,k的符号决定了直线的方向,b的符号决定了直线与y轴的交点位置,据此判断即可.
【详解】
∵一次函数y=kx﹣6中,k<0
∴直线必经过二、四象限;
又∵常数项﹣6<0
∴直线与y轴交于负半轴
∴直线经过第二、三、四象限
故选D.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
4、B
【解析】
结合各个选项中的函数解析式,根据相关函数的性质即可得到答案.
【详解】
y=4x中y随x的增大而增大,故选项A不符题意,
y=﹣4x中y随x的增大而减小,故选项B符合题意,
y=x﹣4中y随x的增大而增大,故选项C不符题意,
y=x2中,当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小,故选项D不符合题意,
故选B.
本题考查了二次函数的性质、一次函数的性质、正比例函数的性质,解答本题的关键是明确题意,利用一次函数和二次函数的性质解答.
5、A
【解析】
直接根据进行计算即可.
【详解】
解:;
故选:A.
本题考查了二次根式的计算与化简,解题的关键是熟练掌握二次根式的运算法则.
6、A
【解析】
先求出不等式的解集,再在数轴上表示出来即可.
【详解】
移项得,,
合并同类项得,,
的系数化为1得,,
在数轴上表示为:
.
故选:.
本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.
7、B
【解析】
以腿长103cm视为从肚脐至足底的高度,求出身高下限;)以头顶到脖子下端长度25cm视为头顶至咽喉长度求出身高上限,由此确定身高的范围即可得到答案.
【详解】
(1)以腿长103cm视为从肚脐至足底的高度,求出身高下限:,
(2)以头顶到脖子下端长度25cm视为头顶至咽喉长度求出身高上限:
①咽喉至肚脐:cm,
②肚脐至足底: cm,
∴身高上限为:25+40+105=170cm,
∴身高范围为: ,
故选:B.
此题考查黄金分割,正确理解各段之间的比例关系,确定身高的上下限,即可得到答案.
8、D
【解析】
直接利用二次根式有意义的条件分析得出答案.
【详解】
解:使得式子有意义,则:4﹣x>0,
解得:x<4
即x的取值范围是:x<4
故选D.
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=-x+1
【解析】
由函数的图象与直线y=-x+1平行,可得斜率,将点(8,2)代入即可人求解.
解:设所求一次函数的解析式为 y=kx+b,
∵函数的图象与直线y=-x+1平行,
∴k=-1,
又过点(8,2),有2=-1×8+b,
解得b=1,
∴一次函数的解析式为y=-x+1,
故答案为y=-x+1.
10、
【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
【详解】
根据题意得:2x+1>0,
解得:.
故答案为:.
函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
11、
【解析】
过点A作AM⊥BD于M,先证明△AEM≌△BEC,得出AM=BC,BE=ME,再根据得出三角形ADM是等腰直角三角形,从而得出AM=BC,结合已知和勾股定理得出DB和BC的长即可
【详解】
过点A作AM⊥BD于M,则
∵
∴
∵EA=EC,
∴
∴AM=BC,BE=ME
∵则设EB=2k,ED=5k
∴EM=2k,DM=3k
∵,
∴AM=DM=BC=3k,BM=4k
则AB=5k=5,k=1
∴DB=7,BC=3
∵
∴DC=
故答案为:
本题考查了全等三角形的判定与性质,等腰直角三角形的性质与判定,以及勾股定理,熟练掌握相关知识是解题的关键
12、
【解析】
平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.
【详解】
解:可设新直线解析式为y=-x+b,
∵原直线y=﹣x+1经过点(0,1),
∴向右平移3个单位,(3,1),
代入新直线解析式得:b=,
∴新直线解析式为:y=﹣x+.
故答案为y=﹣x+.
此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.
13、
【解析】
根据二次根式的性质进行化简.由即可得出答案.
【详解】
解:,
故答案为:.
本题考查的是二次根式的化简,掌握二次根式的性质: 是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)详见解析
【解析】
(1)连接CE并延长,交BA的延长线于P,根据△APE≌△DCE,可得△PBC面积=矩形ABCD面积;
(2)连接矩形ABCD的对角线,交于点O,可得BO=DO,再连接EO并延长,交BC于K,根据△BOK≌△DOE,可得EO=KO,连接DK,即可得到平行四边形BEDK.
【详解】
解:(1)图1中△PBC为所画;
(2)图2中▱BEDK为所画.
本题主要考查了复杂作图,平行四边形的判定,矩形的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.解题时注意:对角线互相平分的四边形是平行四边形。
15、(1);(2);(3)x1=0,x2=6.
【解析】
(1)先对中的分母通分,再进行移项,系数化为1,即可得到答案;
(2)先将变为,再进行加减运算,系数化为1,即可得到答案;
(3)先对x3290进行去括号运算,再进行减法运算,移项即可得到答案.
【详解】
(1)
经检验为原分式方程的根;
(2)
经检验为原方程的根;
(3)x3290
x26x+990
x26x=0
x(x-6)=0,
x1=0,x2=6.
本题考查分式方程,因式分解法解一元二次方程,解题的关键是掌握分式方程和一元二次方程的基本解题步骤,注意解分式方程要检验.
16、 (1)6;(2) 930人;(3) 经典诗词诵背系列活动效果好,理由见解析
【解析】
(1)根据中位数的定义进行解答,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);
(2)用总人数乘以大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数所占的百分比即可;
(3)根据活动初的平均数、中位数与活动后的平均数、中位数进行比较,即可得出答案.
【详解】
(1)∵把这些数从小到大排列,最中间的数是第20和21个数的平均数,则中位数是(首);
(2)根据题意得:
(人),
估计大赛后一个月该校学生一周诗词背6首(含6首)以上的人数为930人.
(3)①活动初40名学生平均背诵首数为(首),
活动1个月后40名学生平均背诵首数为(首);
②活动初学生一周诗词诵背数量中位数为6,活动一个月后学生一周诗词诵背数量中位数为7;
根据以上数据分析,该校经典诗词诵背系列活动效果好.
考查条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
17、(1)见解析;(2)∠BDF=18°.
【解析】
(1)先证明四边形ABCD是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;
(2)求出∠FDC的度数,根据三角形的内角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度数.
【详解】
(1)证明:∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,
∵∠ABC+∠ADC=180°,
∴∠ABC=∠ADC=90°,
∴四边形ABCD是矩形;
(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,
∴∠FDC=36°,
∵DF⊥AC,
∴∠DCO=90°﹣36°=54°,
∵四边形ABCD是矩形,
∴CO=OD,
∴∠ODC=∠DCO=54°,
∴∠BDF=∠ODC﹣∠FDC=18°.
本题考查了平行四边形的判定和性质,矩形的判定和性质,能灵活运用定理进行推理是解题的关键.注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.
18、(1)四边形AEBO为矩形,理由见解析(2)96
【解析】
(1)根据有3个角是直角的四边形是矩形即可证明;(2)根据矩形的性质得出AB=OE=10,再根据勾股定理求出BO,即可得出BD的长,再利用菱形的面积公式进行求解.
【详解】
(1)四边形AEBO为矩形,
理由如下:
∵菱形ABCD的对角线AC、BD相交于点O
∴AC⊥BD,∵BE∥AC,AE∥BD,
∴BE⊥BD,AE⊥AC,∴四边形AEBO为矩形;
(2)∵四边形AEBO为矩形
∴AB=OE=10,
∵AO=AC=8,
∴OB=
∴BD=12,
故S菱形ABCD=AC×BD=×16×12=96
此题主要考查特殊平行四边形的判定与性质,解题的关键是熟知矩形的判定与性质及菱形的性质定理.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据二次根式的意义,被开方数是非负数求解即可.
【详解】
根据题意得:
解得,
故答案为:.
本题主要考查学生对二次根式有意义时被开方数的取值的掌握,熟知二次根式有意义的条件是解题的关键.
20、2
【解析】
两个面积相等的正方形无论它们各自位置如何,当其中一个正方形的顶点与另一个正方形对角线的交点重合时,此时的重合部分面积总是等于其中一个正方形面积的四分之一,据此求解即可.
【详解】
∵无论正方形位置关系如何,其重合部分面积不变,仍然等于其中一个正方形面积的四分之一,
∴重合部分面积=.
故答案为:2.
本题主要考查了正方形性质,熟练掌握相关概念是解题关键.
21、
【解析】
如图把点A向右平移1个单位得到E(1,1),作点E关于x轴的对称点F(1,-1),连接BF,BF与x轴的交点即为点Q,此时AP+PQ+QB的值最小,求出直线BF的解析式,即可解决问题.
【详解】
解:如图把点4向右平移1个单位得到E(1,1),作点E关于x轴的对称点F(1,-1),连接BF,BF与x轴的交点即为点Q,此时4P+PQ+QB的值最小.
设最小BF的解析式为y=kx+b,则有解得
∴直线BF的解析式为y=x-2,
令y=0,得到x=2.
∴Q(2.0)
故答案为(2,0).
本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型
22、-4<x<0或x>1.
【解析】
先根据已知条件画出在同一平面直角坐标系中,函数y=kx+b(k≠0)与(m≠0)的图象,再利用图象求解即可.
【详解】
解:如图.
∵函数y=kx+b(k≠0)与(m≠0)的图象相交于点M(1,4),N(-4,-1),
∴不等式kx+b>的解集为:-4<x<0或x>1.
故答案为-4<x<0或x>1.
本题考查了反比例函数与一次函数的交点问题,画出图象利用数形结合是解题的关键.
23、 (0,-3).
【解析】
令x= 0,求出y的值即可得出结论.
【详解】
解:当x=0时,y=-3
∴一次函数的图象与y轴的交点坐标是(0,-3).
故答案为:(0,-3).
本题考查的是一次函数图形上点的特征,熟知一次函数图象与坐标轴交点的算法是解答此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)第一次购进水果200千克;(2)最初每千克水果标价12元.
【解析】
(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据每千克的价格比第一次购进的价格贵了2元,列出方程求解即可;
(2)设每千克水果的标价是y元,然后根据两次购进水果全部售完,利润不低于3100元列出不等式,然后求解即可得出答案.
【详解】
(1)设第一次购进水果千克,依题意可列方程:
解得
经检验:是原方程的解.
答:第一次购进水果200千克;
(2)设最初水果标价为元,依题意可列不等式:
解得
答:最初每千克水果标价12元.
此题考查了分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系与不等关系是解决问题的关键.
25、(1)见解析;(2),见解析;(3),,(元).
【解析】
(1)根据已知各点坐标进而在坐标系中描出即可;
(2)利用各点坐标乘积不变进而得出函数解析式,再画图象;
(3)利用利润=销量×(每件利润),进而得出答案.
【详解】
解:(1)如图:
(2)因为各点坐标xy乘积不变,猜想y与x为形式的反比例函数,
由题提供数据可知固定k值为24,
所以函数表达式为:,
连线如图:
(3)利润 = 销量 ×(每件利润),
利润为T,销量为y,由(2)知,
每件售价为1,则每件利润为x-1,
所以,
当最大时,最小,而此时最大,
根据题意,钥匙扣售价不超过8元,
所以时,(元).
此题主要考查了反比例函数的应用,正确利用反比例函数增减性得出函数最值是解题关键.
26、证明见解析.
【解析】
由矩形的性质得出,,证出四边形是矩形,再证明,即可得出四边形是正方形;
【详解】
证明:四边形是矩形,
,,
,
,
四边形是矩形,
平分,,
,
,
四边形是正方形.
本题考查了矩形的性质与判定、正方形的判定与性质等知识;熟练掌握矩形的性质,证明四边形是正方形是解决问题的关键.
题号
一
二
三
四
五
总分
得分
一周诗词诵背数量
3首
4首
5首
6首
7首
8首
人数
1
3
5
6
10
15
河南省郑州市中学牟县2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份河南省郑州市中学牟县2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省郑州市郑州中学2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份河南省郑州市郑州中学2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省郑州市郑州外国语2024-2025学年数学九年级第一学期开学复习检测模拟试题【含答案】: 这是一份河南省郑州市郑州外国语2024-2025学年数学九年级第一学期开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。