河南省新乡市封丘县2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】
展开这是一份河南省新乡市封丘县2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC5O5的面积为( )
A.1cm2B.2cm2C.cm2D.cm2
2、(4分)甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A.甲B.乙C.丙D.丁
3、(4分)下列电视台的台标,是中心对称图形的是( )
A.B.C.D.
4、(4分)如图所示,在正方形ABCD中,点E,F分别在CD,BC上,且BF=CE,连接BE,AF相交于点G,则下列结论不正确的是( )
A.BE=AFB.∠DAF=∠BEC
C.∠AFB+∠BEC=90°D.AG⊥BE
5、(4分)顺次连接菱形各边中点所形成的四边形是( )
A.平行四边形B.菱形C.矩形D.正方形
6、(4分)如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是( )
A.AB=36mB.MN∥ABC.MN=CBD.CM=AC
7、(4分)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是( )
A.50°B.60°C.40°D.30°
8、(4分)分别以下列三条线段组成的三角形不是直角三角形的是( )
A.3、4、5B.6、8、10C.1、1、D.6、7、8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数y=(m-3)x+5的函数值y随着x的增大而减小,则m的取值范围_______.
10、(4分)如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+ PD的最小值等于______.
11、(4分)函数y=–1的自变量x的取值范围是 .
12、(4分)如图,四边形中,,,为上一点,分别以,为折痕将两个角(,)向内折起,点,恰好都落在边的点处.若,,则________.
13、(4分)若一次函数中,随的增大而减小,则的取值范围是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:(1);(2);(3)
15、(8分)化简:(.
16、(8分)下表是小华同学一个学期数学成绩的记录.根据表格提供的信息,回答下列的问题:
(1)小明6次成绩的众数是 ,中位数是 ;
(2)求该同学这个同学这一学期平时成绩的平均数;
(3)总评成绩权重规定如下:平时成绩占20%,期中成绩占30%,期末成绩占50%,请计算出小华同学这一个学期的总评成绩是多少分?
17、(10分)把下列各式分解因式:
(1)1a(x﹣y)﹣6b(y﹣x);
(1)(a1+4)1﹣16a1.
18、(10分)化简代数式:,并求当 x=2012 时,代数式的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在中,,、分别是、的中点,延长到点,使,则_____________.
20、(4分)若关于x的方程=m无解,则m的值为_____.
21、(4分)将直线沿y轴向上平移5个单位长度后,所得图象对应的函数关系式为_________.
22、(4分)若代数式+(x﹣1)0在实数范围内有意义,则x的取值范围为_____
23、(4分)已知点M(m,3)在直线上,则m=______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在ABCD中,延长边BA到点E,延长边DC到点F,使CF=AE,连接EF,分别交AD,BC于点M,N.
求证:AM=CN.
25、(10分)如图,在平行四边形ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.
(1)如图1,在旋转的过程中,求证:OE=OF;
(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;
(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.
26、(12分)已知矩形ABCD的一条边AD=8,E是BC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC=4(如图1).
(1)求AB的长;
(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).
①若M是PA的中点,求MH的长;
②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5的面积.
【详解】
解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1= S1,
又S△ABO1=S矩形,∴S1=S矩形=5=;
设ABC2O2为平行四边形为S2,∴S△ABO2=S2,
又S△ABO2=S矩形,∴S2=S矩形==;
,…,
同理:设ABC5O5为平行四边形为S5,S5==.
故选:D.
此题综合考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.
2、A
【解析】
试题分析:根据方差和平均数的意义找出平均数大且方差小的运动员即可.
解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,
∴S甲2=S乙2<S丙2<S丁2,
∴发挥稳定的运动员应从甲和乙中选拔,
∵甲的平均数是561,乙的平均数是560,
∴成绩好的应是甲,
∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;
故选A.
【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
3、D
【解析】
根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D符合。故选D。
4、C
【解析】
∵ABCD是正方形,
∴∠ABF=∠C=90°,AB=BC.
∵BF=CE,∴△ABF≌△BCE.
∴AF=BE(第一个正确).∠BAF=∠CBE,∠BFA=∠BEC(第三个错误).∵∠BAF+∠DAF=90°,∠BAF+∠BFA=90°,
∴∠DAF=∠BEC(第二个正确).
∵∠BAF=∠CBE,∠BAF+∠AFB=90°.
∴∠CBE+∠AFB=90°.∴AG⊥BE(第四个正确).
所以不正确的是C,故选C.
5、C
【解析】
根据题意作图,利用菱形与中位线的性质即可求解.
【详解】
如图,E、F、G、H是菱形ABCD各边的中点,连接EF、FG、GH、EH,判断四边形EFGH的形状,
∵E,F是中点,
∴EF是△ABC的中位线,
∴EH∥BD,
同理,EF∥AC,GH∥AC,FG∥BD,
∴EH∥FG,EF∥GH,
则四边形EFGH是平行四边形,
又∵AC⊥BD,
∴EF⊥EH,
即∠FEH=90°
∴平行四边形EFGH是矩形,
故答案为:C.
此题主要考查中点四边形的判定,解题的关键是熟知菱形的性质以及矩形的判定.
6、C
【解析】
通过构造相似三角形即可解答.
【详解】
解:根据题意可得在△ABC中△ABC∽△MNC,
又因为M.N是AC,BC的中点,
所以相似比为2:1,MN//AB,B正确, CM=AC,D正确.
即AB=2MN=36,A正确;
MN=AB,C错误.
故本题选C.
本题考查相似三角形的判定与运用,熟悉掌握是解题关键.
7、A
【解析】
根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.
【详解】
解:∵将△OAB绕点O逆时针旋转80°
∴∠A=∠C,∠AOC=80°
∴∠DOC=80°﹣α
∵∠A=2∠D=100°
∴∠D=50°
∵∠C+∠D+∠DOC=180°
∴100°+50°+80°﹣α=180° 解得α=50°
故选:A.
本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.
8、D
【解析】
根据勾股定理的逆定理可知,两较短边的平方和等于最长边的平方,逐项验证即可.
【详解】
A.,可组成直角三角形;
B.,可组成直角三角形;
C.,可组成直角三角形;
D.,不能组成直角三角形.
故选D.
本题考查勾股定理的逆定理,熟练掌握两较短边的平方和等于最长边的平方是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m<1
【解析】
一次函数y=kx+b(k≠2)的k<2时,y的值随x的增大而减小,据此可解答.
【详解】
∵一次函数y=(m-1)x+5,y随着自变量x的增大而减小,
∴m-1<2,
解得:m<1,
故答案是:m<1.
本题考查了一次函数图象与系数的关系.一次函数y=kx+b图象与y轴的正半轴相交⇔b>2,一次函数y=kx+b图象与y轴的负半轴相交⇔b<2,一次函数y=kx+b图象过原点⇔b=2.函数值y随x的增大而减小⇔k<2;函数值y随x的增大而增大⇔k>2.
10、
【解析】
过点P作PE⊥AD交AD的延长线于点E,根据四边形ABCD是平行四边形,得到 AB∥CD,推出PE=PD,由此得到当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,利用∠DAB=30°,∠AEP=90°,AB=6求出PB+PE的最小值=AB=3,得到2PB+ PD的最小值等于6.
【详解】
过点P作PE⊥AD交AD的延长线于点E,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠EDC=∠DAB=30°,
∴PE=PD,
∵2PB+ PD=2(PB+PD)=2(PB+PE),
∴当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,
∵∠DAB=30°,∠AEP=90°,AB=6,
∴PB+PE的最小值=AB=3,
∴2PB+ PD的最小值等于6,
故答案为:6.
此题考查平行四边形的性质,直角三角形含30°角的问题,动点问题,将线段2PB+PD转化为三点共线的形式是解题的关键.
11、x≥1
【解析】
试题分析:根据二次根式有意义的条件是被开方数大于等于1,可知x≥1.
考点:二次根式有意义
12、
【解析】
先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC-BH=BC-AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=,所以EF=.
【详解】
解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
∴AB=2EF,DC=DF+CF=8,
作DH⊥BC于H,
∵AD∥BC,∠B=90°,
∴四边形ABHD为矩形,
∴DH=AB=2EF,HC=BC-BH=BC-AD=5-3=2,
在Rt△DHC中,DH=,
∴EF=DH=.
故答案为:.
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
13、
【解析】
在中,当时随的增大而增大,当时随的增大而减小.由此列不等式可求得的取值范围.
【详解】
解:一次函数是常数)中随的增大而减小,
,解得,
故答案为:.
本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,
三、解答题(本大题共5个小题,共48分)
14、(1)1;(2);(3)5.
【解析】
(1)先根据乘方的意义、负整数指数幂的意义、零指数幂的意义、绝对值的意义、二次根式的性质逐项化简,再进一步计算即可;
(2)化为最简二次根式,然后去括号合并同类二次根式即可;
(3)先根据完全平方公式和二次根式的乘法法则计算,再合并化简即可.
【详解】
解:原式;
原式;
原式.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
15、8-4
【解析】
【分析】运用平方差公式和完全平方公式可求出结果.
【详解】解:原式=2﹣1+3﹣4+4
=8﹣4.
【点睛】本题考核知识点:整式运算.解题关键点:熟记平方差公式和完全平方公式.
16、(1)90分;90分;(2)86分;(3)91.2分.
【解析】
(1)根据众数和中位数的定义计算即可;
(2)根据平均数的定义计算即可;
(3)根据加权平均数公式计算即可.
【详解】
解:(1)将小明6次成绩从小到大重新排列为:78、85、90、90、91、94,
所以小明6次成绩的众数是90分、中位数为=90分,
故答案为90分、90分;
(2)该同学这个同学这一学期平时成绩的平均数为=86分;
(3)小华同学这一个学期的总评成绩是86×20%+90×30%+94×50%=91.2(分).
本题考查平均数、中位数、加权平均数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
17、(1)1(x﹣y)(a+3b);(1)(a+1)1(a﹣1)1.
【解析】
(1)两次运用提公因式法,即可得到结果;
(1)先运用平方差公式,再运用完全平方公式,即可得到结果.
【详解】
(1)1a(x﹣y)﹣6b(y﹣x)
=1a(x﹣y)+6b(x﹣y)
=1(x﹣y)(a+3b);
(1)(a1+4)1﹣16a1
=(a1+4+4a)(a1+4﹣4a)
=(a+1)1(a﹣1)1.
本题主要考查了提公因式法以及公式法的综合运用,解题时注意:有公因式时,先提出公因式,再运用公式法进行因式分解.
18、1
【解析】
原式第一项被除数分子利用完全平方公式分解因式,分母利用平方差公式分解因式,除法分子提取x分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后合并得到最简结果,将x的值代入计算,即可求出值.
【详解】
原式=
当x=2012时,原式=1.
本题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
连接EF、AE,证四边形AEFD是平行四边形,注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等,求得AE长即可.
【详解】
连接EF,AE.
∵点E,F分别为BC,AC的中点,
∴EF∥AB,EF=AB.
又∵AD=AB,
∴EF=AD.
又∵EF∥AD,
∴四边形AEFD是平行四边形.
在Rt△ABC中,
∵E为BC的中点,BC=4,
∴AE=BC=2.
又∵四边形AEFD是平行四边形,
∴DF=AE=2.
本题主要考查了平行四边形判定,有中点时需考虑运用三角形的中位线定理或则直角三角形斜边上的中线等于斜边的一半.
20、或.
【解析】
分式方程无解的两种情况是:1.分式方程去分母化为整式方程,整式方程无解;2.整式方程的解使分式方程分母为零.据此分析即可.
【详解】
解:方程两边同时乘以(2x﹣3),得:
x+4m=m(2x﹣3),整理得:
(2m﹣1)x=7m
①当2m﹣1=0时,整式方程无解,m=
②当2m﹣1≠0时,x=,x=时,原分式方程无解;
即,解得m=
故答案为:或.
本题考查了分式方程的解,解决本题的关键是明确分式方程无解的条件几种情况,然后再分类讨论.
21、
【解析】
分析:直接根据“上加下减”的原则进行解答即可.
详解:由“上加下减”的原则可知,直线y=-2x﹣2向上平移5个单位,所得直线解析式是:y=-2x﹣2+5,即y=-2x+1.
故答案为:y=-2x+1.
点睛:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
22、x≥-3且x≠1
【解析】
根据二次根式有意义的条件可得x+3≥0,根据零次幂底数不为零可得x-1≠0,求解即可.
【详解】
解:由题意得:x+3≥0,且x-1≠0,
解得:x≥-3且x≠1.
故答案为x≥-3且x≠1.
此题主要考查了二次根式和零次幂,关键是掌握二次根式中的被开方数是非负数;a0=1(a≠0).
23、2
【解析】
把点M代入即可求解.
【详解】
把点M代入,
即3=2m-1,解得m=2,
故填:2.
此题主要考查一次函数,解题的关键是熟知坐标与函数的关系.
二、解答题(本大题共3个小题,共30分)
24、见解析.
【解析】
由题意可证△AEM≌△FNC,可得结论.
【详解】
∵四边形ABCD是平行四边形
∴BE∥DF,AD∥BC
∴∠E=∠F,∠AME=∠BNE
又∵∠BNE=∠CNF
∴∠AME=∠CNF
在△AEM和OCFN中
∴ΔAEM≌ΔCFN(AAS)
∴AM=CN.
考查了平行四边形的性质,全等三角形的性质和判定,灵活运用这些性质解决问题是本题的关键.
25、(1)证明见解析;(2)平行四边形,理由见解析;(3)45°
【解析】
(1)由平行四边形的性质得出∠OAF=∠OCE,OA=OC,进而判断出△AOF≌△COE,即可得出结论;
(2)先判断出∠BAC=∠AOF,得出AB∥EF,即可得出结论;
(3)先求出AC=2,进而得出A=1=AB,即可判断出△ABO是等腰直角三角形,进一步判断出△BFD是等腰三角形,利用等腰三角形的三线合一得出∠BOF=90°,即可得出结论.
【详解】
(1)证明:在▱ABCD中,AD∥BC,
∴∠OAF=∠OCE,
∵OA=OC,∠AOF=∠COE,
∴△AOF≌△COE(ASA),
∴OE=OF;
(2)当旋转角为90°时,四边形ABEF是平行四边形,理由:
∵AB⊥AC,
∴∠BAC=90°,
∵∠AOF=90°,
∴∠BAC=∠AOF,
∴AB∥EF,
∵AF∥BE,
∴四边形ABEF是平行四边形;
(3)在Rt△ABC中,AB=1,BC=,
∴AC==2,
∴OA=1=AB,
∴△ABO是等腰直角三角形,
∴∠AOB=45°,
∵BF=DF,
∴△BFD是等腰三角形,
∵四边形ABCD是平行四边形,
∴OB=OD,
∴OF⊥BD(等腰三角形底边上的中线是底边上的高),
∴∠BOF=90°,
∴∠α=∠AOF=∠BOF﹣∠AOB=45°.
此题是四边形综合题,主要考查了平行四边形的性质和判定,全等三角形的判定和性质,等腰三角形的判定和性质,等腰直角三角形的性质,旋转的性质,判断出△ABO是等腰直角三角形是解本题的关键.
26、 (1)1;(2);.
【解析】
试题分析:(1)设AB=x,根据折叠可得AP=CD=x,DP=CD-CP=x-4,利用勾股定理,在Rt△ADP中,AD2+DP2=AP2,即82+(x-4)2=x2,即可解答;
(2)①过点A作AG⊥PB于点G,根据勾股定理求出PB的长,由AP=AB,所以PG=BG=PB=,在Rt△AGP中,AG=,
由AG⊥PB,MH⊥PB,所以MH∥AG,根据M是PA的中点,所以H是PG的中点,根据中位线的性质得到MH=AG=.
②作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据MH⊥PQ,得出HQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,最后代入HF=PB即可得出线段EF的长度不变.
试题解析:(1)设AB=x,则AP=CD=x,DP=CD-CP=x-4,
在Rt△ADP中,AD2+DP2=AP2,
即82+(x-4)2=x2,
解得:x=1,
即AB=1.
(2)①如图2,过点A作AG⊥PB于点G,
由(1)中的结论可得:PC=4,BC=8,∠C=90°,
∴PB=,
∵AP=AB,
∴PG=BG=PB=,
在Rt△AGP中,AG=,
∵AG⊥PB,MH⊥PB,
∴MH∥AG,
∵M是PA的中点,
∴H是PG的中点,
∴MH=AG=.
②当点M、N在移动过程中,线段FH的长度是不发生变化;
作MQ∥AN,交PB于点Q,如图3,
∵AP=AB,MQ∥AN,
∴∠APB=∠ABP=∠MQP.
∴MP=MQ,
∵BN=PM,
∴BN=QM.
∵MP=MQ,MH⊥PQ,
∴EQ=PQ.
∵MQ∥AN,
∴∠QMF=∠BNF,
在△MFQ和△NFB中,
,
∴△MFQ≌△NFB(AAS).
∴QF=QB,
∴HF=HQ+QF=PQ+QB=PB=.
∴当点M、N在移动过程中,线段FH的长度是不发生变化,长度为.
考点:四边形综合题.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
平均数(cm)
561
560
561
560
方差s2
3.5
3.5
15.5
16.5
考试类别
平时考试
期中考试
期末考试
第一单元
第二单元
第三单元
第四单元
成绩(分)
85
78
90
91
90
94
相关试卷
这是一份河南省新乡市原阳县2024年数学九年级第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省南阳市2024-2025学年九年级数学第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份河南省滑县2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。