河南省各地(部分地区)2025届九年级数学第一学期开学检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形中,对角线交于点,如果,那么度数是( )
A.B.
C.D.
2、(4分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( )
A.2%B.4.4%C.20%D.44%
3、(4分)如图,l1∥l2,▱ABCD的顶点A在l1上,BC交l2于点E.若∠C=100°,则∠1+∠2=( )
A.100°B.90°C.80°D.70°
4、(4分)已知:如图,是正方形内的一点,且,则的度数为( )
A.B.C.D.
5、(4分)下列由左到右的变形,属于因式分解的是( )
A.B.
C.D.
6、(4分)下列命题中,不正确的是( )
A.对角线互相垂直的四边形是菱形B.正多边形每个内角都相等
C.对顶角相等D.矩形的两条对角线相等
7、(4分)反比例函数y=- 的图象经过点(a,b),(a-1,c),若a<0,则b与c的大小关系是( )
A.b>c B.b=c C.b<c D.不能确定
8、(4分)下列事件中,是必然事件的是( )
A.3天内下雨B.打开电视机,正在播放广告
C.367人中至少有2人公历生日相同D.a抛掷1个均匀的骰子,出现4点向上
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)不等式组的整数解是__________.
10、(4分)如图,在矩形中,不重叠地放上两张面积分别是和的正方形纸片和.矩形没被这两个正方形盖住的面积是________;
11、(4分)不等式的非负整数解为_____.
12、(4分)分解因式:2a3﹣8a=________.
13、(4分)若一组数据的平均数为17,方差为2,则另一组数据的平均数和方差分别为( )
A.17,2B.18,2C.17,3D.18,3
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组并将解集在数轴上表示出来.
15、(8分)如图,正方形ABCD中,O是对角线AC、BD的交点,过点O作OE⊥OF,分别交AB、BC于E. F.
(1)求证:△OEF是等腰直角三角形。
(2)若AE=4,CF=3,求EF的长。
16、(8分)如图,在△ABC中,,,,求AB的长.
17、(10分)已知:点A、C分别是∠B的两条边上的点,点D、E分别是直线BA、BC上的点,直线AE、CD相交于点P.
(1)点D、E分别在线段BA、BC上;
①若∠B=60°(如图1),且AD=BE,BD=CE,则∠APD的度数为 ;
②若∠B=90°(如图2),且AD=BC,BD=CE,求∠APD的度数;
(2)如图3,点D、E分别在线段AB、BC的延长线上,若∠B=90°,AD=BC,∠APD=45°,求证:BD=CE.
18、(10分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:
(1)小帅的骑车速度为 千米/小时;点C的坐标为 ;
(2)求线段AB对应的函数表达式;
(3)当小帅到达乙地时,小泽距乙地还有多远?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在菱形ABCD中,AB=5,对角线AC=1.若过点A作AE⊥BC,垂足为E,则AE的长为_________.
20、(4分)若,则_________ .
21、(4分)平行四边形ABCD中,若,=_____.
22、(4分)如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为____;若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为_____.
23、(4分)将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(1) (2)
25、(10分)某农机厂四月份生产某型号农机台,第二季度(包括四、五、六三个月)共生产该型号农机台.求该农机厂五、六月份平均增长率.
26、(12分)下表是某网络公司员工月收人情况表.
(1)求此公司员工月收人的中位数;
(2)小张求出这个公司员工月收人平均数为元,若用所求平均数反映公司全体员工月收人水平,合适吗?若不合适,用什么数据更好?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
只要证明OA=OD,根据三角形的外角的性质即可解决问题.
【详解】
解:∵四边形ABCD是矩形,
∴OA=AC,OD=BD,AC=BD,
∴OA=OB,
∴∠OAD=∠ODA=30°,
∵∠AOB=∠OAD+∠ODA=60°.
故选:C.
本题考查矩形的性质、等腰三角形的性质,三角形外角的性质等知识,解题的关键是根据矩形的性质得出OA=OB.
2、C
【解析】
分析:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
详解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,
根据题意得:2(1+x)2=2.88,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.
故选C.
点睛:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
3、C
【解析】
由平行四边形的性质得出∠BAD=∠C=100°,AD∥BC,由平行线的性质得出∠2=∠ADE,∠ADE+∠BAD+∠1=180°,得出∠1+∠2=180°-∠BAD=80°即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠BAD=∠C=100°,AD∥BC,
∴∠2=∠ADE,
∵l1∥l2,
∴∠ADE+∠BAD+∠1=180°,
∴∠1+∠2=180°-∠BAD=80°;
故选:C.
本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质和平行线的性质是解题的关键.
4、D
【解析】
利用等边三角形和正方形的性质求得,然后利用等腰三角形的性质求得的度数,从而求得的度数,利用三角形的内角和求得的度数.
【详解】
解:,
是等边三角形,
,
,
,
,
,
同理可得,
,
故选:.
本题考查了正方形的性质及等边三角形的性质,解题的关键是根据等腰三角形的性质求得有关角的度数,难度不大.
5、C
【解析】
根据因式分解的意义,可得答案.
【详解】
A. 是整式的乘法,故A错误;
B. 没把一个多项式转化成几个整式积的形式,故B错误;
C. 把一个多项式转化成几个整式积的形式,故C正确;
D没把一个多项式转化成几个整式积的形式,故D错误.
故答案选:C.
本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.
6、A
【解析】
根据菱形的判定,正多边形的性质,对顶角的性质,矩形的性质依次分析即可.
【详解】
对角线互相垂直的平行四边形是菱形,故A错误,符合题意;
正多边形每个内角都相等,故B正确,不符合题意;
对顶角相等,故C正确,不符合题意;
矩形的两条对角线相等,故D正确,不符合题意,
故选:A.
此题考查判断命题正确与否,正确掌握菱形的判定,正多边形的性质,对顶角的性质,矩形的性质是解题的关键.
7、A
【解析】
根据反比例函数的性质:k<0时,在图象的每一支上,y随x的增大而增大进行分析即可.
【详解】
解:∵k=-3<0,则y随x的增大而增大.
又∵0>a>a-1,则b>c.
故选A.
本题考查了反比例函数图象的性质,关键是掌握反比例函数的性质:
(1)反比例函数y(k≠0)的图象是双曲线;
(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;
(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
8、C
【解析】
根据随机事件和必然事件的定义分别进行判断.
【详解】
A. 3天内会下雨为随机事件,所以A选项错误;
B. 打开电视机,正在播放广告,是随机事件,所以B选项错误;
C. 367人中至少有2人公历生日相同是必然事件,所以C选项正确;
D. a抛掷1个均匀的骰子,出现4点向上,是随机事件,所以D选项错误.
故选C.
此题考查随机事件,解题关键在于掌握其定义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、,,1
【解析】
先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,最后求其整数解即可.
【详解】
解:;
由①得:;
由②得:;
不等式组的解集为:;
所以不等式组的整数解为,,1,
故答案为:,,1.
本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
10、
【解析】
先根据正方形的面积求出正方形纸片和的边长,求出长方形的面积,然后用长方形的面积减去两个正方形纸片的面积即可.
【详解】
∵正方形纸片和的面积分别为和,
∴BC=cm,AE=cm,
.
故答案为:.
本题考查了二次根式混合运算的应用,根据题意求出矩形的面积是解题关键.
11、0,1,1
【解析】
首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.
【详解】
解不等式得:,
∴不等式的非负整数解为0,1,1.
故答案为:0,1,1.
本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.
12、2a(a+2)(a﹣2)
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
.
13、B
【解析】
根据平均数和方差的变化规律,即可得出答案.
【详解】
∵数据x1+1,x1+1,,xn+1的平均数为17,
∴x1+1,x1+1,,xn+1的平均数为18,
∵数据x1+1,x1+1,,xn+1的方差为1,
∴数据x1+1,x1+1,,xn+1的方差不变,还是1;
故选B.
本题考查了方差与平均数,用到的知识点:如果一组数据x1,x1,,xn的平均数为,方差为S1,那么另一组数据ax1+b,ax1+b,,axn+b的平均数为a+b,方差为a1S1.
三、解答题(本大题共5个小题,共48分)
14、.
【解析】
试题分析:首先分别求出不等式组中两个不等式的解,然后在数轴上表示出来,得出不等式组的解.
试题解析:由①,得x>-3, 由②,得x≤1,
解集在数轴上表示为:
所以原不等式的解集为:-3<x≤1.
考点:解不等式组
15、(1)见解析;(2)5.
【解析】
(1)根据正方形的性质可得∠ABO=∠ACF=45°,OB=OC,∠BOC=90°,再根据同角的余角相等求出∠EOB=∠FOC,然后利用“角边角”证明△BEO和△CFO全等,根据全等三角形对应边相等可得OE=OF,从而得证;
(2)根据全等三角形对应边相等可得BE=CF,再根据正方形的四条边都相等求出AE=BF,再利用勾股定理列式进行计算即可得解.
【详解】
(1)证明:∵四边形ABCD为正方形,
∴∠ABO=∠ACF=45∘,OB=OC,∠BOC=90∘,
∴∠FOC+∠BOF=90∘,
又∵OE⊥OF,
∴∠EOF=90∘,
∴∠EOB+∠BOF=90∘,
∴∠EOB=∠FOC,
在△BEO和△CFO中,
,
∴△BEO≌△CFO(ASA),
∴OE=OF,
又∵∠EOF=90∘,
∴△DEF是等腰直角三角形;
(2)解∵△BEO≌△CFO(已证),
∴BE=CF=3,
又∵四边形ABCD是正方形,
∴AB=BC,
∴AB−BE=BC−CF,
即AE=BF=4,
在Rt△BEF中,EF= = =5.
此题考查全等三角形的判定与性质,正方形的性质,解题关键在于得到∠ABO=∠ACF=45°,OB=OC,∠BOC=90°
16、AB=9+4.
【解析】
作CD⊥AB于D,据含30度的直角三角形三边的关系得到CD=,AD=9,再在Rt△BCD中根据正切的定义可计算出BD,然后把AD与BD相加即可.
【详解】
解:如图,过点C作CD⊥AB于点D.
∵在Rt△CDA中,∠A=30°,
∴CD=AC•sin30°=3,AD=AC×cs30°=9,
∵在Rt△CDB中,
∴BD===4.
∴AB=AD+DB=9+4.
本题考查了解直角三角形.解题时,通过作CD⊥AB于D构建Rt△ACD、Rt△BCD是解题关键.
17、(1)①60°;②45°;(2)见解析
【解析】
(1)连结AC,由条件可以得出△ABC为等边三角形,再由证△CBD≌△ACE就可以得出∠BCD=∠CAE,就可以得出结论;
(2)作AF⊥AB于A,使AF=BD,连结DF,CF,就可以得出△FAD≌△DBC,再证△DCF为等腰直角三角形,由∠FAD=∠B=90°,就可以得出AF∥BC,就可以得出四边形AECF是平行四边形,就有AE∥CF,就可以得出∠EAC=∠FCA,就可以得出结论;
(3)作AF⊥AB于A,使AF=BD,连结DF,CF,就可以得出△FAD≌△DBC,再证△DCF为等腰直角三角形,就有∠DCF=∠APD=45°,推出CF∥AE,由∠FAD=∠B=90°,就可以得出AF∥BC,就可以得出四边形AFCE是平行四边形,就有AF=CE.
【详解】
(1)①如图1,连结AC,
∵AD=BE,BD=CE,
∴AD+BD=BE+CE,
∴AB=BC.
∵∠B=60°,
∴△ABC为等边三角形.
∴∠B=∠ACB=60°,BC=AC.
在△CBD和△ACE中
,
∴△CBD≌△ACE(SAS),
∴∠BCD=∠CAE.
∵∠APD=∠CAE+∠ACD,
∴∠APD=∠BCD+∠ACD=60°.
故答案为60°;
②如图2,作AF⊥AB于A,使AF=BD,连结DF,CF,
∴∠FAD=90°.
∵∠B=90°,
∴∠FAD=∠B.
在△FAD和△DBC中,
,
∴△FAD≌△DBC(SAS),
∴DF=DC,∠ADF=∠BCD.
∵∠BDC+∠BCD=90°,
∴∠ADF+∠BDC=90°,
∴∠FDC=90°,
∴∠FCD=45°.
∵∠FAD=90°,∠B=90,
∴∠FAD+∠B=180°,
∴AF∥BC.
∵DB=CE,
∴AF=CE,
∴四边形AECF是平行四边形,
∴AE∥CF,
∴∠EAC=∠FCA.
∵∠APD=∠ACP+∠EAC,
∴∠APD=∠ACP+∠ACE=45°;
(2)如图3,作AF⊥AB于A,使AF=BD,连结DF,CF,
∴∠FAD=90°.
∵∠ABC=90°,
∴∠FAD=∠DBC=90°.
在△FAD和△DBC中,
,
∴△FAD≌△DBC(SAS),
∴DF=DC,∠ADF=∠BCD.
∵∠BDC+∠BCD=90°,
∴∠ADF+∠BDC=90°,
∴∠FDC=90°,
∴∠FCD=45°.
∵∠APD=45°,
∴∠FCD=∠APD,
∴CF∥AE.
∵∠FAD=90°,∠ABC=90,
∴∠FAD=∠ABC,
∴AF∥BC.
∴四边形AECF是平行四边形,
∴AF=CE,
∴CE=BD.
此题考查了全等三角形的判定与性质的运用,等边三角形的判定及性质的运用,平行四边形的判定及性质的运用,等腰直角三角形的判定及性质的运用.解答时证明三角形全等是关键.
18、 (1)16,C(0.5,0);(2);(3)4千米.
【解析】
(1)根据时间从1到2小帅走的路程为(24-8)千米,根据速度=路程÷时间即可求得小帅的速度,继而根据小帅的速度求出走8千米的时间即可求得点C的坐标;
(2)根据图象利用待定系数法即可求得线段AB对应的函数表达式;
(3)将x=2代入(2)中的解析式求出相应的y值,再用24减去此时的y值即可求得答案.
【详解】
(1)由图可知小帅的骑车速度为:(24-8)÷(2-1)=16千米/小时,
点C的横坐标为:1-8÷16=0.5,
∴点C的坐标为(0.5,0),
故答案为千米/小时;(0.5,0);
(2)设线段对应的函数表达式为,
∵,,
∴,
解得:,
∴线段对应的函数表达式为;
(3)当时,,
∴24-20=4,
答:当小帅到达乙地时,小泽距乙地还有4千米.
本题考查了一次函数的应用,弄清题意,找出求解问题所需要的条件,利用数形结合思想是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理表示出AE的平方,列出方程求解并进一步得到AE的长.
【详解】
设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理可得:
所以
解得,
所以AE=.
考点:1.菱形的性质;2.勾股定理.
20、-2
【解析】
试题解析:∵
∴b=3a
∴.
21、120°
【解析】
根据平行四边形对角相等求解.
【详解】
平行四边形ABCD中,∠A=∠C,又,
∴∠A=120°,
故填:120°.
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.
22、 (1,1) (-1,-1).
【解析】
根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点旋转后的坐标.
【详解】
∵菱形OABC的顶点O(0,0),B(2,2),得
∴D点坐标为(1,1).
∵每秒旋转45°,
∴第60秒旋转45°×60=2700°,
2700°÷360°=7.5周,即OD旋转了7周半,
∴菱形的对角线交点D的坐标为(-1,-1),
故答案为:(1,1);(-1,-1)
本题考查了旋转的性质及菱形的性质,利用旋转的性质得出OD旋转的周数是解题关键.
23、
【解析】
因为阴影部分的面积=S正方形BCQW﹣S梯形VBCF,根据已知求得梯形的面积即不难求得阴影部分的面积了.
解:∵VB∥ED,三个正方形的边长分别为2、3、5,
∴VB:DE=AB:AD,即VB:5=2:(2+3+5)=1:5,
∴VB=1,
∵CF∥ED,
∴CF:DE=AC:AD,即CF:5=5:10
∴CF=2.5,
∵S梯形VBFC=(BV+CF)•BC=,
∴阴影部分的面积=S正方形BCQW﹣S梯形VBCF=.
故答案为.
二、解答题(本大题共3个小题,共30分)
24、(1); (2)
【解析】
(1)先求出绝对值,再把各二次根式化为最简二次根式,然后合并同类二次根式;
(2)先根据平方差公式和乘法法则进行计算,然后合并同类二次根式.
【详解】
解:(1)
=
=
=;
(2)
=
=
=.
本题考查了二次根式的混合运算和绝对值,先把各二次根式化为最简二次根式,根据绝对值定义求解出绝对值,在进行二次根式的乘除运算,然后合并同类二次根式,同时也考察了平方差公式.
25、五、六月份平均增长率为.
【解析】
根据题意设出合理未知数,列出方程求解即可.
【详解】
解:设五、六月份平均增长率为.
根据题意得,
解得,(不符合题意舍去)
答:五、六月份平均增长率为.
本题主要考查二次函数的增长率的应用问题,关键在于根据题意列方程,注意一个月的产量等于增长的加上原来的.
26、(1)3000元;(2)不合适,利用中位数更好.
【解析】
(1)根据中位数的定义首先找到25的最中间的数,再确定对应的工资数即可;
(2)先分析25人的收入与平均工资关系,根据月收入平均数为6080元,和25名员工的收入进行比较即可.
【详解】
25个数据按大小顺序排列,最中间的是第13个数,
从收入表中可看出,第13个员工的工资数是3000元,
因此,中位数为元;
用所求平均数反应公司全体员工月收入水平不合适;
这个公司员工月收入平均数为6080元,但在25名员工中,仅有3名员工的收入在平均数以上,而另有22名员工收入在平均数以下,因此,用平均数反映所有员工的月收入不合适,
利用中位数更好.
此题考查了平均数、中位数,用到的知识点是中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.
题号
一
二
三
四
五
总分
得分
批阅人
月收入(元)
人数
2024年江苏省无锡市各地九年级数学第一学期开学检测模拟试题【含答案】: 这是一份2024年江苏省无锡市各地九年级数学第一学期开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省各地(部分地区)九上数学开学监测试题【含答案】: 这是一份2024-2025学年河南省各地(部分地区)九上数学开学监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年河南省各地(部分地区)九年级数学第一学期期末质量检测模拟试题含答案: 这是一份2023-2024学年河南省各地(部分地区)九年级数学第一学期期末质量检测模拟试题含答案,共7页。试卷主要包含了一元二次方程的一次项系数是等内容,欢迎下载使用。