|试卷下载
终身会员
搜索
    上传资料 赚现金
    河北石家庄市长安区第十中学2025届数学九上开学复习检测模拟试题【含答案】
    立即下载
    加入资料篮
    河北石家庄市长安区第十中学2025届数学九上开学复习检测模拟试题【含答案】01
    河北石家庄市长安区第十中学2025届数学九上开学复习检测模拟试题【含答案】02
    河北石家庄市长安区第十中学2025届数学九上开学复习检测模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北石家庄市长安区第十中学2025届数学九上开学复习检测模拟试题【含答案】

    展开
    这是一份河北石家庄市长安区第十中学2025届数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为( )
    A.B.C.D.
    2、(4分)下列计算:,其中结果正确的个数为( )
    A.1B.2C.3D.4
    3、(4分)关于的分式方程有增根,则的值为
    A.0B.C.D.
    4、(4分)式子①,②,③,④中,是分式的有 ( )
    A.①②B.③④C.①③D.①②③④
    5、(4分)已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a-c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为( )
    A.12B.14C.16D.20
    6、(4分)如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是( )
    A.120°B.90 °C.60°D.30°
    7、(4分)如图,将一个矩形纸片ABCD,沿着BE折叠,使C、D两点分别落在点、处若,则的度数为
    A.B.C.D.
    8、(4分)在,,,高,则BC的长是( )
    A.14B.4C.4或14D.7或13
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,等腰直角三角形ABC的直角边AB的长为,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点D,则图中阴影△ADC′的面积等于______.
    10、(4分)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=,∠AEO=120°,则FC的长度为_____.
    11、(4分)若正多边形的一个内角等于150°,则这个正多边形的边数是______.
    12、(4分)已知一个反比例函数的图象与正比例函数的图象有交点,请写出一个满足上述条件的反比例函数的表达式:__________________.
    13、(4分)已知:,则_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.

    (1)求证:AE=2CE;
    (2)连接CD,请判断△BCD的形状,并说明理由.
    15、(8分)如图:、是锐角的两条高,、分别是、的中点,若EF=6,.
    (1)证明:;
    (2)判断与的位置关系,并证明你的结论;
    (3)求的长.
    16、(8分)如图,在平面直角坐标系中,直线分别交两坐标轴于A、B两点,直线y=-2x+2分别交两坐标轴于C、D两点

    (1)求A、B、C、D四点的坐标
    (2)如图1,点E为直线CD上一动点,OF⊥OE交直线AB于点F,求证:OE=OF
    (3)如图2,直线y=kx+k交x轴于点G,分别交直线AB、CD于N、M两点.若GM=GN,求k的值
    17、(10分)某公司购进某种矿石原料300吨,用于生产甲、乙两种产品,生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:
    生产1吨甲产品所需成本费用为4000元,每吨售价4600元;
    生产1吨乙产品所需成本费用为4500元,每吨售价5500元,
    现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.
    (1)写出m与x之间的关系式
    (2)写出y与x之间的函数表达式,并写出自变量的范围
    (3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大,最大利润是多少?
    18、(10分)操作与证明:如图,把一个含角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AC、AE、其中AC与EF交于点N,取AF中点M,连接MD、MN.
    求证:是等腰三角形;
    在的条件下,请判断MD,MN的数量关系和位置关系,并给出证明.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设原参加旅游的同学有x人,则根据题意可列方程___________________________ .
    20、(4分)如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线恰好将矩形OABC分成面积相等的两部分,那么b=_____________.
    21、(4分)某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:
    如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩_____.
    22、(4分)函数中,自变量x的取值范围是___________.
    23、(4分)(2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数和的图象,分别与x轴交于点A、B,两直线交于点C. 已知点,,观察图象并回答下列问题:
    (1)关于x的方程的解是______;关于x的不等式的解集是______;
    (2)直接写出关于x的不等式组的解集;
    (3)若点,求关于x的不等式的解集和△ABC的面积.
    25、(10分)有这样一个问题:
    探究函数的图象与性质.
    小东根据学习函数的经验,对函数的图象与性质进行了探究.
    下面是小东的探究过程,请补充完成:
    (1)填表
    (2)根据(1)中的结果,请在所给坐标系中画出函数的图象;
    (3)结合函数图象,请写出该函数的一条性质.
    26、(12分)如图,已知□ABCD边BC在x轴上,顶点A在y轴上,对角线AC所在的直线为y=+6,且AC=AB,若点P从点A出发以1cm/s的速度向终点O运动,同时点Q从点C出发以2cm/s的速度沿射线CB运动,当点P到达终点O时,点Q也随之停止运动.设点P的运动时间为t(s).
    (1)直接写出顶点D的坐标(______,______),对角线的交点E的坐标(______,______);
    (2)求对角线BD的长;
    (3)是否存在t,使S△POQ=S▱ABCD,若存在,请求出的t值;不存在说明理由.
    (4)在整个运动过程中,PQ的中点到原点O的最短距离是______cm,(直接写出答案)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.
    详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.
    ∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).
    ∵P1与P2关于原点对称,∴P2(2.8,3.6).
    故选A.
    点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
    2、D
    【解析】
    根据二次根式的运算法则即可进行判断.
    【详解】
    ,正确;正确;正确;,正确,故选D.
    此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:;
    .
    3、D
    【解析】
    分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x+2=0,得到x=-2,然后代入化为整式方程的方程算出m的值即可.
    详解:方程两边都乘(x+2),
    得:x-5=m,
    ∵原方程有增根,
    ∴最简公分母:x+2=0,
    解得x=-2,
    当x=-2时,m=-1.
    故选D.
    点睛:此题考查了分式方程增根的知识.注意增根问题可按如下步骤进行:
    ①让最简公分母为0确定增根;
    ②化分式方程为整式方程;
    ③把增根代入整式方程即可求得相关字母的值.
    4、C
    【解析】
    式子①,②,③,④中,是分式的有,
    故选C.
    5、C
    【解析】
    有非负数的性质得到a=c,b=8,,PQ∥y轴,由于其扫过的图形是矩形可求得,代入即可求得结论.
    【详解】
    解:|a-c|+=0,
    ∴a=c,b=8,
    ,PQ∥y轴,
    ∴PQ=8-2=6,
    将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和6的矩形,

    ∴a=4,
    ∴c=4,
    ∴a+b+c=4+8+4=16;
    故选:C.
    本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y轴,进而求得PQ是解题的关键.
    6、B
    【解析】
    根据直角三角形两锐角互余解答.
    【详解】
    由题意得,剩下的三角形是直角三角形,
    所以,∠1+∠2=90°.
    故选:B.
    此题考查直角三角形的性质,解题关键在于掌握其性质.
    7、B
    【解析】
    根据折叠前后对应角相等即可得出答案.
    【详解】
    解:设∠ABE=x,
    根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
    所以50°+x+x=90°,
    解得x=20°.
    故选B.
    本题考核知识点:轴对称. 解题关键点:理解折叠的意义.
    8、C
    【解析】
    分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD−BD.
    【详解】
    解:(1)如图
    锐角△ABC中,AB=15,AC=13,BC边上高AD=12,
    在Rt△ABD中AB=15,AD=12,由勾股定理得:
    BD2=AB2−AD2=152−122=81,
    ∴BD=9,
    在Rt△ACD中AC=13,AD=12,由勾股定理得
    CD2=AC2−AD2=132−122=25,
    ∴CD=5,
    ∴BC的长为BD+DC=9+5=11;
    (2)如图
    钝角△ABC中,AB=15,AC=13,BC边上高AD=12,
    在Rt△ABD中AB=15,AD=12,由勾股定理得:
    BD2=AB2−AD2=152−122=81,
    ∴BD=9,
    在Rt△ACD中AC=13,AD=12,由勾股定理得:
    CD2=AC2−AD2=132−122=25,
    ∴CD=5,
    ∴BC的长为DC−BD=9−5=1.
    故BC长为11或1.
    故选:C.
    本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    由旋转的性质可得AB=AB'=,∠BAB'=15°,可得∠B'AD=∠BAC-∠B'AB=30°,由直角三角形的性质可得B'D=1,由三角形面积公式可求解.
    【详解】
    解:∵AB=BC,∠ABC=90°,
    ∴∠BAC=45°,
    ∵△ABC绕点A逆时针旋转15°后得到△AB′C′,
    ∴AB=AB'=,∠BAB'=15°,
    ∴∠B'AD=∠BAC-∠B'AB=30°,且∠B'=90°,
    ∵tan∠B'AD=,
    ∴AB'=B'D,
    ∴B'D=1,
    ∴阴影△ADC'的面积=,
    故答案为:.
    本题考查了旋转的性质,等腰直角三角形的性质,及锐角三角函数的知识,熟练运用旋转的性质是本题的关键.
    10、1
    【解析】
    先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.
    【详解】
    解:∵EF⊥BD,∠AEO=120°,
    ∴∠EDO=30°,∠DEO=60°,
    ∵四边形ABCD是矩形,
    ∴∠OBF=∠OCF=30°,∠BFO=60°,
    ∴∠FOC=60°-30°=30°,
    ∴OF=CF,
    又∵Rt△BOF中,BO=BD=AC=,
    ∴OF=tan30°×BO=1,
    ∴CF=1,
    故答案为:1.
    本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分.
    11、1.
    【解析】
    首先根据求出外角度数,再利用外角和定理求出边数.
    【详解】
    正多边形的一个内角等于,
    它的外角是:,
    它的边数是:.
    故答案为:1.
    此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.
    12、
    【解析】
    写一个经过一、三象限的反比例函数即可.
    【详解】
    反比例函数与有交点.
    故答案为:.
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
    13、
    【解析】
    由题意设,再代入代数式求值即可.
    【详解】
    由题意设,,则
    考查了代数式求值,本题属于基础应用题,只需学生熟练掌握代数式求值的方法,即可完成.
    三、解答题(本大题共5个小题,共48分)
    14、见解析
    【解析】
    (1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得∠ABE=∠A;结合三角形外角的性质可得∠BEC的度数,再在Rt△BCE中结合含30°角的直角三角形的性质,即可证明第(1)问的结论;
    (2)根据直角三角形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到∠ABC=60°,至此不难判断△BCD的形状
    【详解】
    (1)证明:连结BE,如图.
    ∵DE是AB的垂直平分线,
    ∴AE=BE,
    ∴∠ABE=∠A=30°,
    ∴∠CBE=∠ABC-∠ABE=30°,
    在Rt△BCE中,BE=2CE,
    ∴AE=2CE.
    (2)解:△BCD是等边三角形.
    理由如下:
    ∵DE垂直平分AB,
    ∴D为AB的中点.
    ∵∠ACB=90°,
    ∴CD=BD.
    又∵∠ABC=60°,
    ∴△BCD是等边三角形.
    此题考查了线段垂直平分线的性质、30°角的直角三角形的性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的一半,等边三角形的判定,熟练掌握30°角的直角三角形的性质是解(1)的关键,熟练掌握直角三角形斜边的中线等于斜边的一半是解(2)的关键,
    15、(1)证明见解析;(2)MN垂直平分EF,证明见解析;(3)MN=.
    【解析】
    (1)依据BE、CF是锐角△ABC的两条高,可得∠ABE+∠A=90°,∠ACF+∠A=90°,进而得出∠ABE=∠ACF;
    (2)连接EM、FM,根据直角三角形斜边上的中线等于斜边的一半可得EM=FM=BC,再根据等腰三角形三线合一的性质解答;
    (3)求出EM、EN,然后利用勾股定理列式计算即可得解.
    【详解】
    解:(1)∵BE、CF是锐角△ABC的两条高,
    ∴∠ABE+∠A=90°,∠ACF+∠A=90°,
    ∴∠ABE=∠ACF;
    (2)MN垂直平分EF.
    证明:如图,连接EM、FM,
    ∵BE、CF是锐角△ABC的两条高,M是BC的中点,
    ∴EM=FM=BC,
    ∵N是EF的中点,
    ∴MN垂直平分EF;
    (3)∵EF=6,BC=24,
    ∴EM=BC=×24=12,EN=EF=×6=3,
    由勾股定理得,MN=.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,勾股定理,熟记性质并作辅助线构造出等腰三角形是解题的关键.
    16、(1),,,;(2)见解析;(3)
    【解析】
    (1)分别针对于直线AB. CD的解析式,令x=0和y=0, 解方程即可得出结论;
    (2)先判断出AO=OD,OB=OC,得出△AOB≌△DOC (SAS) 。进而得出∠OAB=∠ODC,再利用同角的余角相等判断出∠AOF=∠BOE,得出△AOF≌△DOE (ASA),即可得出结论;
    (3)先求出点G的坐标,设出点M、N的坐标,利用中点坐标公式建立方程组求解得出m,n,进而得出点M坐标,代入直线y=kx+k中,即可得出结论.
    【详解】
    解:(1)∵
    ∴令x=0,则y=1.
    ∴B(0,1)

    令y=0, 则,
    ∴x=-2,
    ∴A(-2, 0)

    令x=0,则y=2,
    ∴D(0,2),

    令y=0,则-2x+2=0,
    ∴x=1 ,
    ∴C(1.0)
    (2)由(1)知,A(-2,0),B(0,1),C(1,0),D(0,2),
    ∴OA=2,OB=1,OC=1,OD=2
    ∴,
    又∵∠AOB=∠DOC

    ∴∠OAB=∠ODC

    ∴∠BOF+∠BOE=90°
    ∵∠BOF+∠AOF=90°



    (3)∵
    ∴必过轴上一定点
    分别作轴于,轴于
    ∵,

    ∴,



    ∴即,
    ∴的解析式为

    此题是一次函数综合题,主要考查了坐标轴上点的特点,全等三角形的判定和性质,中点坐标公式,准确做出辅助线是解本题的关键.
    17、(1)m=75-2.5x;(2)y=-1900x+75000(0≤x≤30);(3)生产甲产品25吨时,公司获得的总利润最大,最大利润是27500元.
    【解析】
    (1)∵生产甲产品x吨,则用矿石原料10x吨.∴生产乙产品用矿石原料为(300-10x)吨,由此得出;
    (2)先求出生产1吨甲、乙两种产品各获利多少,然后可求出获得的总利润.
    (3)由于总利润y是x的一次函数,先求出x的取值范围,再根据一次函数的增减性,求得最大利润.
    【详解】
    (1)m与x之间的关系式为
    (2)生产1吨甲产品获利:4600-4000=600
    生产1吨乙产品获利:5500-4500=1000
    y与x的函数表达式为:(0≤x≤30)
    (3)根据题意列出不等式
    解得x≥25
    又∵0≤x≤30
    ∴25≤x≤30
    ∵y与x的函数表达式为:y=-1900x+75000
    y随x的增大而减小,
    ∴当生产甲产品25吨时,公司获得的总利润最大
    y最大=-1900×25+75000=27500(元).
    本题考查的知识点是用函数的知识解决实际问题,解题关键是注意自变量的取值范围还必须使实际问题有意义.
    18、(1)证明见解析;(2)
    【解析】
    (1)根据正方形性质得:AB=AD=BC=CD,∠ABE=∠ADF=90°,再根据等腰直角三角形得BE=DF,证明△ABE≌△ADF,得AE=AF,则△AFE是等腰三角形;
    (2)先根据直角三角形斜边中线等于斜边一半得:DM=AF,再由等腰三角形三线合一得:AC⊥EF,EN=FN,同理MN=AF,则DM=MN;可证∠FMD=2∠FAD,∠FMN==2∠FAC,
    则∠DMN=∠DMF+∠FMN=2∠FAD +2∠FAC=2∠DAC=90°.即可得到DM⊥MN.
    【详解】
    (1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠ABE=∠ADF=90°,
    ∵△EFC是等腰直角三角形,∴CE=CF,∴BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF,∴△AFE是等腰三角形;
    (2)DM=MN,且DM⊥MN.理由是:
    在Rt△ADF中,∵M是AF的中点,∴DM=AF,
    ∵EC=FC,AC平分∠ECF,
    ∴AC⊥EF,EN=FN,
    ∴∠ANF=90°,
    ∴MN=AF,∴MD=MN.
    由(1)得:△ABE≌△ADF,∴∠BAE=∠FAD,
    ∵DM=AF=AM,∴∠FAD=∠ADM,
    ∴∠FMD=∠FAD+∠ADM=2∠FAD,
    同理:∠FMN==2∠FAC,
    ∴∠DMN=∠DMF+∠FMN=2∠FAD +2∠FAC=2∠DAC=2×45°=90°.
    ∴MD⊥MN.
    本题考查了正方形、等腰直角三角形的性质,本题还应用了直角三角形斜边中线的性质,要熟练掌握;本题的关键是证明△ABE≌△ADF,从而得出结论.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    分析: 等量关系为:原来人均单价-实际人均单价=3,把相关数值代入即可.
    详解: 原来人均单价为,实际人均单价为,
    那么所列方程为,
    故答案为:
    点睛: 考查列分式方程;得到人均单价的关系式是解决本题的关键.
    20、0.5
    【解析】
    经过矩形对角线的交点的直线平分矩形的面积.故先求出对角线的交点坐标,再代入直线解析式求解.
    【详解】
    连接AC、OB,交于D点,作DE⊥OA于E点,
    ∵四边形OABC为矩形,
    ∴DE=AB=3,OE=OA=7.5,
    ∴D(7.5,3),
    ∵直线恰好将矩形OABC分成面积相等的两部分,
    ∴直线经过点D,
    ∴将(7.5,3)代入直线得:
    3=×7.5+b,
    解得:b=0.5,
    故答案为:0.5.
    本题考查了一次函数的综合应用及矩形的性质;找着思考问题的突破口,理解过矩形对角线交点的直线将矩形面积分为相等的两部分是正确解答本题的关键.
    21、89.6分
    【解析】
    将面试所有的成绩加起来再除以3即可得小王面试平均成绩,再根据加权平均数的含义和求法,求出小王的最终成绩即可.
    【详解】
    ∵面试的平均成绩为=88(分),
    ∴小王的最终成绩为=89.6(分),
    故答案为89.6分.
    此题主要考查了加权平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.同时考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.
    22、且.
    【解析】
    根据二次根式的性质以及分式的意义,分别得出关于的关系式,然后进一步加以计算求解即可.
    【详解】
    根据二次根式的性质以及分式的意义可得:,且,
    ∴且,
    故答案为:且.
    本题主要考查了二次根式的性质与分式的性质,熟练掌握相关概念是解题关键.
    23、2
    【解析】
    解:正方形为旋转对称图形,绕中心旋转每90°便与自身重合. 可判断每个阴影部分的面积为正方形面积的,这样可得答案填2.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)x=-1,;(2)-1<x<2;(3),.
    【解析】
    (1)利用直线与x轴交点即为y=0时,对应x的值,进而得出答案;
    (2)利用两直线与x轴交点坐标,结合图象得出答案;
    (3)两条直线相交于点C,根据点C的左右两边图像的位置可确定答案;利用三角形面积公式求得即可.
    【详解】
    解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(-1,0)、B(2,0),
    ∴关于x的方程k1x+b1=0的解是x=-1,
    关于x的不等式kx+b<0的解集,为x>2,
    故答案为x=-1,x>2;
    (2)根据图象可以得到关于x的不等式组的解集-1<x<2;
    (3)∵C(1, 3),
    根据图象可以得到关于x的不等式k1x+b1>kx+b的解集:
    ∵AB=3,
    ∴S△ABC=AB•yC=×3×3=.
    此题主要考查了一元一次方程的解、一次函数与不等式,一次函数与不等式组,三角形面积,正确利用数形结合解题是解题关键.
    25、(1)见解析;(2)见解析;(3)见解析
    【解析】
    (1)将x的值代入函数中,再求得y的值即可;
    (2)根据(1)中x、y的值描点,连线即可;
    (3)根据(2)中函数的图象写出一条性质即可,如:不等式成立的的取值范围是.
    【详解】
    (1)填表如下:
    (2)根据(1)中的结果作图如下:
    (3)根据(2)中的图象,不等式成立的的取值范围是.
    考查了画函数的图象、性质,解题关键是由列表得到图象,由图象得到性质.
    26、(1)16;6;4;3;(2)BD=6;(3)存在,t值为2;(4)此时PQ的中点到原点O的最短距离为.
    【解析】
    (1)令x=0,y=0代入解析式得出A,C坐标,进而利用平行四边形的性质解答即可;
    (2)根据平行四边形的性质得出点B,D坐标,利用两点间距离解答即可;
    (3)利用三角形的面积公式和平行四边形的面积公式列出方程解答即可;
    (4)根据直角三角形斜边上中线等于斜边的一半可知,当PQ长度最短时,PQ的中点到原点O的距离最短解答即可.
    【详解】
    (1)把x=0代入y=+6,可得y=6,
    即A的坐标为(0,6),
    把y=0代入y=+6,可得:x=8,
    即点C的坐标为(8,0),
    根据平行四边形的性质可得:点B坐标为(-8,0),
    所以AD=BC=16,
    所以点D坐标为(16,6),
    点E为对角线的交点,
    故点E是AC的中点,
    E的坐标为(4,3),
    故答案为16;6;4;3;
    (2)因为B(-8,0)和D(16,6),
    ∴BD=;
    (3)设时间为t,可得:OP=6-t,OQ=8-2t,
    ∵S△POQ= S▱ABCD,
    当0<t≤4时,,
    解得:t1=2,t2=8(不合题意,舍去),
    当4<t≤6时,,
    △<0,不存在,
    答:存在S△POQ=S▱ABCD,此时t值为2;
    (4)∵,
    当t=时,PQ=,
    当PQ长度最短时,PQ的中点到原点O的距离最短,此时PQ的中点到原点O的最短距离为PQ==
    此题是一次函数综合题,主要考查了平行四边形的性质,待定系数法,利用平行四边形的性质解答是解本题的关键.
    题号





    总分
    得分
    批阅人
    产品资源


    矿石(吨)
    10
    4
    煤(吨)
    4
    8
    面试
    笔试
    成绩
    评委1
    评委2
    评委3
    92
    88
    90
    86

    0
    1
    2
    3
    4
    5
    6
    . . .

    3
    2
    . . .
    . . .
    0
    1
    2
    3
    4
    5
    6
    . . .
    . . .
    3
    2
    1
    0
    . . .
    相关试卷

    河北省石家庄市桥西区2024年数学九上开学复习检测模拟试题【含答案】: 这是一份河北省石家庄市桥西区2024年数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河北石家庄市长安区第十中学九上数学开学质量检测试题【含答案】: 这是一份2024年河北石家庄市长安区第十中学九上数学开学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河北省石家庄市长安区九上数学开学质量检测模拟试题【含答案】: 这是一份2024年河北省石家庄市长安区九上数学开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map