广东省茂名市2024年数学九年级第一学期开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数据中能作为直角三角形的三边长的是( )
A.1,2,2B.1,1,C.4,5,6D.1,,2
2、(4分)如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为( )
A.32B.16C.8D.4
3、(4分)如图,的对角线,相交于点,点为中点,若的周长为28,,则的周长为( )
A.12B.17C.19D.24
4、(4分)如图所示,是半圆的直径,点从点出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )
A.B.C.D.
5、(4分)下列描述一次函数y=﹣2x+5图象性质错误的是( )
A.y随x的增大而减小
B.直线与x轴交点坐标是(0,5)
C.点(1,3)在此图象上
D.直线经过第一、二、四象限
6、(4分)某多边形的每个内角均为120°,则此多边形的边数为( ).
A.5 B.6 C.7 D.8
7、(4分)下列化简正确的是( )
A.B.C.D.
8、(4分)下列运算中正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均收入美元,预计2019年人均收入将达到美元,设2017年到2019年该地区人均收入平均增长率为,可列方程为__________.
10、(4分)计算 +( )2=________.
11、(4分)已知三角形的三条中位线的长分别为5cm、6cm、10cm,则这个三角形的周长是_____cm.
12、(4分)在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、…,、、…在直线上,点、、…,在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、..,则的值为________.
13、(4分)将一个矩形纸片按如图所示折叠,若, 则的度数是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算或解不等式组:
(1)计算.
(2)解不等式组
15、(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).其中A(1,1)、B(4,4)、C(5,1).
(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;
(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△A2B2C2,A、B、C的对应点分别是A2、B2、C2;
(3)连CB2,直接写出点B2、C2的坐标B2: 、C2: .
16、(8分)如图,是的中位线,过点作交的延长线于点,求证:.
17、(10分)《九章算术》卷九中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽.问绳索长是多少?
18、(10分)已知,,为的三边长,并且满足条件,试判断的形状.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知:如图,△ABC中,∠ACB=90°,AB=5cm,AC=4cm,CD⊥AB于D,求CD的长及三角形的面积.
20、(4分)如果是两个不相等的实数,且满足,那么代数式_____.
21、(4分)若把分式中的x,y都扩大5倍,则分式的值____________.
22、(4分)现有四根长,,,的木棒,任取其中的三根,首尾顺次相连后,能组成三角形的概率为______.
23、(4分)使代数式有意义的x的取值范围是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,四边形为平行四边形,为坐标原点,,将平行四边形绕点逆时针旋转得到平行四边形,点在的延长线上,点落在轴正半轴上.
(1)证明:是等边三角形:
(2)平行四边形绕点逆时针旋转度.的对应线段为,点的对应点为
①直线与轴交于点,若为等腰三角形,求点的坐标:
②对角线在旋转过程中设点坐标为,当点到轴的距离大于或等于时,求的范围.
25、(10分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.
(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;
(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)
26、(12分)近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作、、、;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:
(1)本次调查的学生总数为 人;
(2)在扇形统计图中,所对应扇形的圆心角 度,并将条形统计图补充完整;
(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据勾股定理的逆定理对各选项进行逐一分析即可.
【详解】
解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;
B、∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;
C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;
D、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.
故选D.
本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
2、C
【解析】
根据等腰三角形的性质和中位线的性质求解即可.
【详解】
∵AD=AC
∴是等腰三角形
∵AE⊥CD
∴
∴E是CD的中点
∵F是BC的中点
∴EF是△BCD的中位线
∴
故答案为:C.
本题考查了三角形的线段长问题,掌握等腰三角形的性质和中位线的性质是解题的关键.
3、A
【解析】
由四边形ABCD是平行四边形,根据平行四边形的性质可得OB=OD,再由E是CD中点,即可得BE=BC,OE是△BCD的中位线,由三角形的中位线定理可得OE=AB, 再由▱ABCD的周长为28,BD=10, 即可求得AB+BC=14,BO=5,由此可得BE+OE=7, 再由△OBE的周长为=BE+OE+BO即可求得△OBE的周长.
【详解】
∵四边形ABCD是平行四边形,
∴O是BD中点, OB=OD,
又∵E是CD中点,
∴BE=BC,OE是△BCD的中位线,
∴OE=AB,
∵▱ABCD的周长为28,BD=10,
∴AB+BC=14,
∴BE+OE=7,BO=5
∴△OBE的周长为=BE+OE+BO=7+5=1.
故选A.
本题考查了平行四边形的性质及三角形的中位线定理,熟练运用性质及定理是解决问题的关键.
4、D
【解析】
依题意,可以知道点P从O到A匀速运动时,OP的长s逐渐变大;在上运动时,长度s不变;从B到O匀速运动时,OP的长s逐渐变小直至为1.依此即可求解.
【详解】
解:可以看出从O到A逐渐变大,而弧AB中的半径不变,从B到O中OP逐渐减少直至为1.
故选:D.
此题考查了函数随自变量的变化而变化的问题,能够结合图形正确分析距离y与时间x之间的大小变化关系,从而正确选择对应的图象.
5、B
【解析】
由于k=-2<0,则y随x的增大而减小可知A正确;把x=0,x=1分别代入直线的解析式可判断B、C的正误;再由b>0,则直线经过第一、二、四象限,故D正确.
【详解】
A、因为k=﹣2<0,则y随x的增大而减小,所以A选项的说法正确;
B、因为x=0,y=5,直线与y轴交点坐标是(0,5),所以B选项的说法错误;
C、因为当x=1时,y=﹣2+5=3,所以点(1,3)在此图象上,所以C选项的说法正确;
D、因为k<0,b>0,直线经过第一、二、四象限,所以D选项的说法正确.
故选:B.
本题考查了一次函数的性质,熟知一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b)是解答此题的关键.
6、B
【解析】先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.
解: ∵多边形的每一个内角都等于120°,多边形的内角与外角互为邻补角,
∴每个外角是度60°,
多边形中外角的个数是360÷60°=60°,则多边形的边数是6.
故选B.
7、A
【解析】
根据二次根式的性质以及合并同类二次根式法则,一一化简即可.
【详解】
A. 正确.
B. 错误.
C. 错误.
D. 错误. .
故选A.
此题考查二次根式的加减法,二次根式的性质与化简,解题关键在于掌握运算法则.
8、B
【解析】
根据二次根式的加法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据乘方的意义对D进行判断.
【详解】
A. 不能合并,所以A选项错误;
B. 原式=,所以B选项正确;
C. 原式= ,所以C选项错误;
D. 原式=3,所以D选项错误。
故选B.
此题考查二次根式的混合运算,掌握运算法则是解题关键
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据题意列出2018年人均收入将达到的美元的式子,即可得出2019年人均收入将达到的美元的方程,进而得解.
【详解】
根据题意,可得
2018年人均收入将达到,
2019年人均收入将达到
即为
此题主要考查一元二次方程的实际应用,熟练掌握,即可解题.
10、6
【解析】
根据二次根式的性质计算.
【详解】
原式=3+3
=6.
故答案为:6.
考查二次根式的运算,掌握是解题的关键.
11、1
【解析】
根据三角形的中位线定理解答即可.
【详解】
∵三角形的三条中位线的长分别是5cm、6cm、10cm,
∴三角形的三条边分别是10cm、12cm、20cm.
∴这个三角形的周长=10+12+20=1cm.
故答案是:1.
本题考查了三角形的中位线定理,熟知三角形的中位线定理是解决问题的关键.
12、
【解析】
根据=,=,找出规律从而得解.
【详解】
解:
∵直线,当x=0时,y=1,当y=0时,x=﹣1,
∴OA1=1,OD=1,
∴∠ODA1=45°,
∴∠A2A1B1=45°,
∴A2B1=A1B1=1,
∴=,
∵A2B1=A1B1=1,
∴A2C1=2=,
∴=,
同理得:A3C2=4=,…,=,
∴=,
故答案为.
13、40°
【解析】
依据平行线的性质,即可得到,,进而得出,再根据进行计算即可.
【详解】
解:如图所示,,
,,
由折叠可得,,
,
故答案为:.
本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)不等式组无解.
【解析】
(1)根据二次根式的运算顺序及运算法则进行计算即可求解;(2)分别求得两个不等式的解集,根据不等式解集确定方法即可求得不等式组的解集.
【详解】
(1)原式
(2)
解不等式①得,;
解不等式②得,,
所以不等式组无解.
本题考查了二次根式的混合运算及一元一次不等式组的解法,熟练运用相关知识是解决问题的关键.
15、(1)见解析;(2)见解析;(3)(4,﹣2),(1,﹣3).
【解析】
(1)分别画出A、B、C的对应点A1,B1,C1即可
(2)分别画出A、B、C的对应点A2, B2, C2即可
(3)根据B2, C2的位置写出坐标即可;
【详解】
解:(1)的△A1B1C1如图所示.
(2)的△A2B2C2如图所示.
(3)B2(4,﹣2),C2(1,﹣3),
故答案为(4,﹣2),(1,﹣3).
此题考查作图-旋转变换和平移变换,掌握作图法则是解题关键
16、见解析.
【解析】
根据题意可知,本题考查的是三角形中位线定理和三角形全等的性质,根据三角形的中位线平行于第三边且等于第三边的一半和全等三角形对应边相等,进行推理证明.
【详解】
证明:∵是的中位线,
∴.
∵,
∴,,
∴,
∴.
本题解题关键:熟练运用三角形中位线定理与全等三角形的性质.
17、绳索长为尺.
【解析】
设绳索长为x尺,则根据题意可得斜边为x,直角边分别是8和x-3的直角三角形,然后运用勾股定理列方程解答即可.
【详解】
解:设绳索长为尺,根据题意得:
答:绳索长为尺.
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题
18、等腰三角形或直角三角形等腰直角三角形.
【解析】
对已知等式运用因式分解变形,得到,即a-b=0或a2+b2=c2,通过分析判断即可解决问题.
【详解】
解:,
,
,
,
则a-b=0或a2+b2=c2,
当a-b=0时,△ABC为等腰三角形;
当a2+b2=c2时,△ABC为直角三角形.
当a-b=0且a2+b2=c2时,△ABC为等腰直角三角形.
综上所述,△ABC为等腰三角形或直角三角形或等腰直角三角形.
本题主要考查了因式分解在几何中的应用问题;解题的关键是:灵活变形、准确分解、正确判断.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、S△ABC=6cm2,CD=cm.
【解析】
利用勾股定理求得BC=3cm,根据直角三角形的面积等于两直角边乘积的一半即可求得△ABC的面积,再利用直角三角形的面积等于斜边乘以斜边上高的一半可得AB•CD=6,由此即可求得CD的长.
【详解】
∵∠ACB=90°,AB=5cm,AC=4cm,
∴BC==3cm,
则S△ABC=×AC×BC=×4×3=6(cm2).
根据三角形的面积公式得:AB•CD=6,
即×5×CD=6,
∴CD=cm.
本题考查了勾股定理、直角三角形面积的两种表示法,根据勾股定理求得BC=3cm是解决问题的关键.
20、1
【解析】
由于m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,可知m,n是x2-x-3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=1,mn=-3,又n2=n+3,利用它们可以化简,然后就可以求出所求的代数式的值.
【详解】
解:由题意可知:m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,
所以m,n是x2-x-3=0的两个不相等的实数根,
则根据根与系数的关系可知:m+n=1,mn=-3,
又n2=n+3,
则2n2-mn+2m+2015
=2(n+3)-mn+2m+2015
=2n+6-mn+2m+2015
=2(m+n)-mn+2021
=2×1-(-3)+2021
=2+3+2021
=1.
故答案为:1.
本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值.
21、扩大5倍
【解析】
【分析】把分式中的x和y都扩大5倍,分别用5x和5y去代换原分式中的x和y,利用分式的基本性质化简即可.
【详解】把分式中的x,y都扩大5倍得:
=,
即分式的值扩大5倍,
故答案为:扩大5倍.
【点睛】本题考查了分式的基本性质,根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.
22、
【解析】
先展示所有可能的结果数,再根据三角形三边的关系得到能组成三角形的结果数,然后根据概率公式求解.
【详解】
解:∵现有四根长30cm、40cm、70cm、90cm的木棒,任取其中的三根,可能结果有:30cm、40cm、70cm;30cm、40cm、90cm;30cm、70cm、90cm;40cm、70cm、90cm;其中首尾相连后,能组成三角形的有:30cm、70cm、90cm;40cm、70cm、90cm;
共有4种等可能的结果数,其中有2种能组成三角形,
所以能组成三角形的概率= .
故答案为:.
本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .
23、.
【解析】
根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析(2)①P(0, )或(0, -4)②-8≤m≤-或≤m≤1
【解析】
(1)根据A点坐标求出∠AOF=60°,再根据旋转的特点得到AO=AF,故可求解;
(2)①设P(0,a)根据等腰三角形的性质分AP=OP和AO=OP,分别求出P点坐标即可;
②分旋转过程中在第三象限时到轴的距离等于与旋转到第四象限时到轴的距离等于,再求出当旋转180°时的坐标,即可得到m的取值.
【详解】
(1)如图,过A点作AH⊥x轴,
∵
∴OH=2,AH=2
∴AO=
故AO=2OH
∴∠OAH=30°
∴∠AOF=90°-∠OAH=60°
∵旋转
∴AO=AF
∴△AOF是等边三角形;
(2)①设P(0,a)
∵是等腰三角形
当AP=OP时,(2-0)2+(2-a)2=a2
解得a=
∴P(0, )
当AO=OP时,OP= AO=4
∴P(0, -4)
故为等腰三角形时,求点的坐标是(0, )或(0, -4);
②旋转过程中点的对应点为,
当开始旋转,至到轴的距离等于时,m的取值为-8≤m≤-;
当旋转到第四象限,到轴的距离等于时,m=
当旋转180°时,设C’的坐标为(x,y)
∵C、关于A点对称,
∴
解得
∴(1,)
∴m的取值为≤m≤1,
综上,当点到轴的距离大于或等于时,求的范围是-8≤m≤-或≤m≤1.
此题主要考查旋转综合题,解题的关键是熟知等边三角形的判定、等腰三角形的性质、勾股定理、对称性的应用.
25、(1)当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+1;(2)第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.
【解析】
(1)根据题意和函数图象中的数据可以求得第一批产品A的日销售量w与上市时间t的关系;
(2)根据函数图象中的数据可以求得第一批产品A上市后,哪一天这家商店日销售利润Q最大,并求出Q的最大值.
【详解】
解:(1)由图①可得,
当0≤t≤30时,可设日销售量w=kt,
∵点(30,60)在图象上,
∴60=30k.
∴k=2,即w=2t;
当30<t≤40时,可设日销售量w=k1t+b.
∵点(30,60)和(40,0)在图象上,
∴,
解得,k1=﹣6,b=1,
∴w=﹣6t+1.
综上所述,日销售量w=;
即当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+1;
(2)由图①知,当t=30(天)时,日销售量w达到最大,最大值w=60,
又由图②知,当t=30(天)时,产品A的日销售利润y达到最大,最大值y=60(元/件),
∴当t=30(天)时,日销售量利润Q最大,最大日销售利润Q=60×60=3600(元),
答:第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
26、(1)50;(2)144°,图见解析;(3) .
【解析】
(1)根据“优”的人数和所占的百分比即可求出总人数;
(2)用360°乘以“良”所占的百分比求出B所对应扇形的圆心角;用总人数减去“优”、“良”、“差”的人数,求出“中”的人数,即可补全统计图;
(3)根据题意画出树状图得出所以等情况数和所选的两位同学测试成绩恰好都为“良”的情况数,然后根据概率公式即可得出答案.
【详解】
(1)本次调查的学生总数为:15÷30%=50(人);
故答案为:50;
(2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;
“中”等级的人数是:50-15-20-5=10(人),补图如下:
故答案为:10;
(3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:
共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,
则所选的两位同学测试成绩恰好都为“良”的概率是 .
此题考查列表法或树状图法求概率.解题关键在于掌握列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
题号
一
二
三
四
五
总分
得分
广东省河源市名校2024年数学九年级第一学期开学达标测试试题【含答案】: 这是一份广东省河源市名校2024年数学九年级第一学期开学达标测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省广州市名校2025届九年级数学第一学期开学达标检测试题【含答案】: 这是一份广东省广州市名校2025届九年级数学第一学期开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届广东省云浮数学九年级第一学期开学达标测试试题【含答案】: 这是一份2025届广东省云浮数学九年级第一学期开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。