终身会员
搜索
    上传资料 赚现金

    广东省广州市荔湾区广雅实验学校2024-2025学年数学九上开学经典模拟试题【含答案】

    立即下载
    加入资料篮
    广东省广州市荔湾区广雅实验学校2024-2025学年数学九上开学经典模拟试题【含答案】第1页
    广东省广州市荔湾区广雅实验学校2024-2025学年数学九上开学经典模拟试题【含答案】第2页
    广东省广州市荔湾区广雅实验学校2024-2025学年数学九上开学经典模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省广州市荔湾区广雅实验学校2024-2025学年数学九上开学经典模拟试题【含答案】

    展开

    这是一份广东省广州市荔湾区广雅实验学校2024-2025学年数学九上开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l2、l3、l4上.若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为( )
    A.4cm2B.5cm2C.20cm2D.30cm2
    2、(4分)某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( )
    A.29人B.30人C.31人D.32人
    3、(4分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点的坐标表示正确的是
    A.(5,30)B.(8,10)C.(9,10)D.(10,10)
    4、(4分)样本数据3、6、a、4、2的平均数是5,则这个样本的方差是( )
    A.8B.5C.D.3
    5、(4分)如图,某班数学兴趣小组利用数学知识测量建筑物DEFC的高度.他们从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平的地面,则此建筑物的高度CD约为( )米.(参考数据:≈1.7,tan35°≈0.7)
    A.23.1B.21.9C.27.5D.30
    6、(4分)如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )
    A.B.C.D.
    7、(4分)反比例函数y=的图象经过点M(﹣3,2),则下列的点中在反比例函数的图象上为( )
    A.(3,2)B.(2,3)C.(1,6)D.(3,﹣2)
    8、(4分)小军自制的匀速直线运动遥控车模型甲、乙两车同时分别从、出发,沿直线轨道同时到达处,已知乙的速度是甲的速度的1.5倍,甲、乙两遥控车与处的距离、(米)与时间(分钟)的函数关系如图所示,则下列结论中:①的距离为120米;②乙的速度为60米/分;③的值为;④若甲、乙两遥控车的距离不少于10米时,两车信号不会产生互相干扰,则两车信号不会产生互相干扰的的取值范围是,其中正确的有( )个
    A.1B.2C.3D.4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.
    10、(4分)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第5幅图中有______个正方形.
    11、(4分)若n边形的每个内角都是,则________.
    12、(4分)已知,,则的值为___________.
    13、(4分)在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:
    根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知直线 :与x轴,y轴的交点分别为A,B,直线 : 与y轴交于点C,直线与直线的交点为E,且点E的横坐标为2.
    (1)求实数b的值;
    (2)设点D(a,0)为x轴上的动点,过点D作x轴的垂线,分别交直线与直线于点M、N,若以点B、O、M、N为顶点的四边形是平行四边形,求a的值.
    15、(8分)如图,在平面直角坐标系 xOy中,直线ykxb与 x轴相交于点A,与反比例函数在第一象限内的图像相交于点 A(1,8)、B(m,2).
    (1)求该反比例函数和直线y kxb的表达式;
    (2)求证:ΔOBC为直角三角形;
    (3)设∠ACO=α,点Q为反比例函数在第一象限内的图像上一动点,且满足90°-α<∠QOC<α,求点Q的横坐标q的取值范围.

    16、(8分)(1)因式分解:
    (2)解方程:
    17、(10分)如图所示,在□ABCD中,点E,F在它的内部,且AE=CF,BE=DF,试指出AC与EF的关系,并说明理由.
    18、(10分)李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图所示.
    (1)观察图象,直接写出日销售量的最大值;
    (2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知点A(a,5)与点B(-3,b)关于y轴对称,则a-b= .
    20、(4分)若△ABC∽△DEF, △ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为________.
    21、(4分)一个装有进水管出水管的容器,从某时刻起只打开进水管进水,经过一段时间,在打开出水管放水,至15分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(升)与时间x(分钟)之间的关系如图所示,关停进水管后,经过_____________分钟,容器中的水恰好放完.
    22、(4分)已知一个直角三角形的斜边长为6cm,那么这个直角三角形斜边上的中线长为________cm.
    23、(4分)在数学课上,老师提出如下问题:如何使用尺规完成“过直线l外一点A作已知直线l的平行线”.

    小云的作法如下:
    (1)在直线l 上任取一点B,以点B为圆心,AB长为半径作弧, 交直线l 于点C;
    (2)分别以A,C为圆心,以AB长为半径作弧,两弧相交于点D;
    (3)作直线AD.
    所以直线AD即为所求.
    老师说:“小云的作法正确”.
    请回答:小云的作图依据是____________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF
    (1)填空∠B=_______°;
    (2)求证:四边形AECF是矩形.
    25、(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
    (1)求反比例函数和一次函数的解析式;
    (2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.
    26、(12分)已知:如图,▱ABCD的对角线AC与BD相交于点O,过点O的直线与AD,BC分别相交于点E,F.
    (1)求证:OE=OF;
    (2)连接BE,DF,求证:BE=DF.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    过D作直线EF与平行线垂直,交l1与点E,交l4于点F.再证明,得到 ,故可求的CD的长,进而求出正方形的面积.
    【详解】
    过D作直线EF与l2垂直,交l1与点E,交l4于点F.

    ,即
    四边形ABCD为正方形




    在和中





    即正方形的面积为20
    故选C.
    本题主要考查平行线的性质,关键在于利用三角形全等求正方形的边长.
    2、B
    【解析】
    设这个敬老院的老人有x人,则有牛奶(4x+28)盒,根据关键语句“如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒”可得不等式组:
    , 解得:29<x≤1.
    ∵x为整数,∴x最少为2.故选B.
    3、C
    【解析】
    先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.
    【详解】
    如图,
    过点C作CD⊥y轴于D,
    ∴BD=5,CD=50÷2-16=9,
    OA=OD-AD=40-30=10,
    ∴P(9,10);
    故选C.
    此题考查了坐标确定位置,根据题意确定出DC=9,AO=10是解本题的关键.
    4、A
    【解析】
    本题可先求出a的值,再代入方差的公式即可.
    【详解】
    ∵3、6、a、4、2的平均数是5,
    ∴a=10,
    ∴方差.
    故选A.
    本题考查的知识点是平均数和方差的求法,解题关键是熟记计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.
    5、B
    【解析】
    过点B作BN⊥AD,BM⊥DC垂足分别为N,M,设BN=x,则AN=2.4x,在Rt△ABN中,根据勾股定理求出x的值,从而得到BN和DM的值,然后分别在Rt△BDM和Rt△BCM中求出BM和CM的值,即可求出答案.
    【详解】
    如图所示:过点B作BN⊥AD,BM⊥DC垂足分别为N,M,
    ∵i=1:2.4,AB=26m,
    ∴设BN=x,则AN=2.4x,
    ∴AB==2.6x,
    则2.6x=26,
    解得:x=10,
    故BN=DM=10m,
    则tan30°= = = ,
    解得:BM=10,
    则tan35°== =0.7,
    解得:CM≈11.9(m),
    故DC=MC+DM=11.9+10=21.9(m).
    故选B.
    本题考查了解直角三角形的应用,如果没有直角三角形则作垂线构造直角三角形,然后利用直角三角形的边角关系来解决问题,有时还会用到勾股定理,相似三角形等知识才能解决问题.
    6、A
    【解析】
    首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.
    【详解】
    设此多边形为n边形,
    根据题意得:180(n-2)=1080,
    解得:n=8,
    ∴这个正多边形的每一个外角等于:360°÷8=45°.
    故选A.
    此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.
    7、D
    【解析】
    根据题意得,k=xy=﹣3×2=﹣6,再将A,B,C,D四个选项中点的坐标代入得到k=﹣6的点在反比例函数的图象上.
    【详解】
    根据题意得,k=xy=﹣3×2=﹣6
    ∴将A(3,2)代入得到k=6,故不在反比例函数的图象上;
    将B(2,3)代入得到k=6,故不在反比例函数的图象上;
    将C(1,6)代入得到k=6,故不在反比例函数的图象上;
    将D(3,-2)代入得到k=﹣6的点在反比例函数的图象上.
    故选D.
    本题考查了反比例函数图象上点的坐标特征,关键是运用xy=k解决问题.
    8、C
    【解析】
    根据题意和函数图象中的数据可以判断各个小题中的结论是否成立,从而可以解答本题.
    【详解】
    由图可得,
    AC的距离为120米,故①正确;
    乙的速度为:(60+120)÷3=60米/分,故②正确;
    a的值为:60÷60=1,故③错误;
    令[60+(120÷3)t]-60t≥10,得t≤,
    即若甲、乙两遥控车的距离不少于10米时,两车信号不会产生相互干扰,则两车信号不会产生相互干扰的t的取值范围是0≤t≤,故④正确;
    故选C.
    本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.
    【详解】
    ∵多边形的一个顶点出发的对角线共有(n-3)条,
    ∴n-3=3,
    ∴n=6,
    ∴内角和=(6-2)×180°=1°,
    故答案是:1.
    本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.
    10、55
    【解析】
    观察图形,找到正方形的个数与序数之间的关系,从而得出第5幅图中正方形的个数.
    【详解】
    解:∵第1幅图中有1个正方形,
    第2幅图中有1+4=5个正方形,
    第3幅图中有1+4+9=14个正方形,
    ∴第4幅图中有12+22+32+42=30个正方形,
    第5幅图中有12+22+32+42+52=55个正方形.
    故答案为:55.
    本题考查查图形的变化规律,能根据图形之间的变化规律,得出正方形个数与序数之间的规律是解决此题的关键.
    11、1
    【解析】
    根据内角度数先算出外角度数,然后再根据外角和计算出边数即可.
    【详解】
    解:∵n边形的每个内角都是120°,
    ∴每一个外角都是180°-120°=10°,
    ∵多边形外角和为310°,
    ∴多边形的边数为310÷10=1,
    故答案为:1.
    此题主要考查了多边形的内角和外角,关键是掌握多边形的外角和等于310度.
    12、1
    【解析】
    将写成(x+y)(x-y),然后利用整体代入求值即可.
    【详解】
    解:∵,,
    ∴,
    故答案为:1.
    本题考查了平方差公式的应用,将写成(x+y)(x-y)形式是代入求值在关键.
    13、0.1
    【解析】
    大量重复试验下摸球的频率可以估计摸球的概率,据此求解.
    【详解】
    观察表格发现随着摸球次数的增多频率逐渐稳定在0.1附近,
    故摸到白球的频率估计值为0.1;
    故答案为:0.1.
    本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.
    三、解答题(本大题共5个小题,共48分)
    14、(2)2;(2)a=5或-2.
    【解析】
    (2)利用一次函数图象上点的坐标特征,由点E在直线上可得到点E的坐标,由点E在直线上,进而得出实数b的值;
    (2)依据题意可得MN=|2+a−(2−a)|=|a−2|,BO=2.当MN=BO=2时,以点B、O、M、N为顶点的四边形为平行四边形,即可得到|a-2|=2,进而得出a的值.
    【详解】
    解:(2)∵点E在直线l2上,且点E的横坐标为2,
    ∴点E的坐标为(2,2),
    ∵点E在直线l上,
    ∴2=−×2+b,
    解得:b=2;
    (2)如图,当x=a时,yM=2−a,yN=2+a,
    ∴MN=|2+a−(2−a)|=|a−2|,
    当x=0时,yB=2,
    ∴BO=2.
    ∵BO∥MN,
    ∴当MN=BO=2时,以点B、O、M、N为顶点的四边形为平行四边形,
    此时|a-2|=2,
    解得:a=5或a=-2.
    ∴当以点B、O、M、N为顶点的四边形为平行四边形,a的值为5或-2.
    故答案为:(2)2;(2)a=5或-2.
    本题考查一次函数图象上点的坐标特征、平行四边形的性质以及解一元一次方程,熟练掌握平行四边形的性质是解题的关键.
    15、(1);;(2)证明见解析;(3).
    【解析】
    (1)首先利用待定系数法求得反比例函数的解析式,然后求得B的坐标,则利用待定系数法即可求得直线的解析式;
    (2)过点B作BD⊥OC于点D,在直角△OBD和直角△OBC中,利用勾股定理求得和,然后利用勾股定理的逆定理即可证明;
    (3)分成Q在B的左侧和右侧两种情况讨论,当在右侧时一定不成立,当在左侧时,判断是否存在点Q时∠QCO=90°-α即可.
    【详解】
    (1)设反比例函数的解析式是y=kx,
    把(1,8)代入得k=8,
    则反比例函数表达式为,
    把(m,2)代入得,
    则B的坐标是(4,2).
    根据题意得:,
    解得:,
    ,则直线表达式y=−2x+10;
    (2)过点B作BD⊥OC于点D,(图1)则D的坐标是(4,0).
    在y=−2x+10中,令y=0,解得x=5,则OC=5.
    ∵在直角△OBD中,BD=2,DC=OC−OD=5−4=1,
    则,
    同理,直角△BCD中, ,
    ∴,
    ∴△OBC是直角三角形;
    (3)当Q在B的右侧时一定不成立,
    在y=−2x+10中,令x=0,则y=10,

    则当Q在的左边时,(图2)tan∠ACO=tanα=2,
    则tan(90°−α)= .
    当∠QCO=90°−α时,Q的横坐标是p,则纵坐标是,
    tan∠QCO=tan(90°−α)= :(5−p)=
    即,
    △=25−4×16=−39

    相关试卷

    广东省广州市白云区广州白云广雅实验学校2024-2025学年数学九上开学学业水平测试试题【含答案】:

    这是一份广东省广州市白云区广州白云广雅实验学校2024-2025学年数学九上开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省广州市白云区广州白云广雅实验学校2024-2025学年数学九上开学达标测试试题【含答案】:

    这是一份广东省广州市白云区广州白云广雅实验学校2024-2025学年数学九上开学达标测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广东省广州白云广雅实验学校数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年广东省广州白云广雅实验学校数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map